Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'ускорение':
Найдено статей: 13
  1. Естественным обобщением дифференциальных игр двух лиц являются конфликтно управляемые процессы с участием группы управляемых объектов (хотя бы с одной из противоборствующих сторон). При этом наибольшую трудность для исследований представляют задачи конфликтного взаимодействия между двумя группами управляемых объектов. Специфика этих задач требует создания новых методов их исследования. В данной работе рассматривается нелинейная задача группового преследования группы жестко скоординированных (то есть использующих одинаковое управление) убегающих при условии, что маневренность убегающих выше. Цель убегающих - обеспечить мягкое убегание всей группы. Под мягким убеганием понимается несовпадение геометрических координат, ускорений и так далее для убегающего и всех преследователей. Для любых начальных позиций участников построено позиционное управление, обеспечивающее мягкое убегание от группы преследователей всех убегающих.

  2. Золотых Н.Ю., Кубарев В.К., Лялин С.С.
    Метод двойного описания над полем алгебраических чисел, с. 161-175

    Рассматривается задача построения вершинного описания выпуклого полиэдра, заданного как множество решений некоторой системы линейных неравенств, коэффициенты которой являются алгебраическими числами. Обратная задача эквивалентна (двойственна) исходной. Предлагаются программные реализации нескольких модификаций хорошо известного метода двойного описания (метода Моцкина-Бургера), решающего поставленную задачу. Рассматривается два случая: 1) элементы системы неравенств - произвольные алгебраические числа, при этом каждое такое число задается минимальным многочленом и локализующим интервалом; 2) элементы системы неравенств принадлежат заданному конечному расширению ${\mathbb Q} (\alpha)$ поля ${\mathbb Q}$, при этом для $\alpha$ задаются минимальный многочлен и локализующий интервал, а все элементы исходной системы, конечные и промежуточные результаты представлены как многочлены от $\alpha$. Как и ожидалось, программная реализация для второго варианта значительно превосходит реализацию для первого варианта по производительности. Для большего ускорения во втором случае предлагается использовать булевы матрицы вместо матриц невязок. Результаты вычислительного эксперимента показывают, что программные реализации вполне пригодны для решения задач умеренных размеров.

  3. В настоящее время в рамках управления воздушным движением крайне важной является задача формирования оптимального безопасного расписания прибытия самолетов в точку слияния воздушных трасс. Безопасность результирующей очереди обеспечивается наличием безопасного временнóго интервала между соседними прибытиями в точку слияния. Изменение момента прибытия может обеспечиваться изменением скорости движения самолета и/или использованием схем, удлиняющих или укорачивающих его траекторию. Оптимальность результирующей очереди рассматривается с точки зрения дополнительных требований: минимизации отклонения назначенных моментов прибытия от номинальных, минимизации количества изменений порядка самолетов в очереди, минимизации расхода топлива и т.д. Минимизируемый критерий оптимальности, отражающий эти требования, часто выбирается как сумма индивидуальных штрафов каждому судну за отклонение назначенного момента прибытия от номинального. Функция индивидуального штрафа почти во всех статьях рассматривается либо как модуль отклонения, либо как функция, похожая на модуль, но с различными наклонами ветвей, что приводит к разному штрафу за задержку и ускорение. В целом, задача может быть разделена на две: одна связана с поиском оптимального порядка прибытия судов, вторая — с выбором оптимальных моментов прибытия при заданном порядке. Последняя подзадача достаточно просто решается, поскольку чаще всего может быть формализована как задача линейного программирования. Однако первая решается значительно сложнее, для ее решения применяются разнообразные методы — от эвристических и генетических процедур до подходов смешанного целочисленного линейного программирования. В статье предлагаются условия на параметры задачи, достаточные для того, чтобы порядок оптимальных моментов прибытия самолетов в точку слияния совпадал с порядком номинальных моментов. Это позволяет исключить первую подзадачу из решения всей задачи.

  4. Рассматривается конфликтное взаимодействие групп управляемых объектов. Цель группы преследователей - поймать, а группы убегающих - избежать поимки. Все игроки обладают равными динамическими возможностями. Движение игроков задается дифференциальным уравнением третьего порядка. Все убегающие используют одинаковое управление, поэтому о них можно говорить как о жестко скоординированных инерционных объектах. Доказано, что если выпуклые оболочки, натянутые на начальные ускорения группы преследователей и группы убегающих, не пересекаются, то происходит уклонение от встречи.

  5. Неголономные механические системы возникают во многих задачах, имеющих практическое значение. Известной моделью в неголономной механике являются сани Чаплыгина. Сани Чаплыгина представляют собой твердое тело, опирающееся на поверхность острым невесомым колесом. Острый край колеса препятствует скольжению в направлении, перпендикулярном его плоскости. В данной работе рассмотрены сани Чаплыгина с изменяющимся со временем распределением масс, которое возникает за счет движения точки в поперечном относительно плоскости лезвия направлении. Получены уравнения движения, среди которых отделяется замкнутая система уравнений с периодическими по времени коэффициентами, описывающая эволюцию поступательной и угловой скорости саней. Показано, что если проекция центра масс всей системы на ось вдоль лезвия равна нулю, тогда поступательная скорость саней возрастает. При этом траектория точки контакта, как правило, является неограниченной.

  6. Рассматривается задача о конфликтном взаимодействии одного убегающего и группы преследователей. Все игроки обладают равными динамическими возможностями. Движение каждого из них описывается дифференциальным уравнением четвертого порядка. Убегающий обладает полной информацией, а преследователи знают только координаты всех игроков. Поимка понимается как совпадение ускорений, скоростей и координат игроков. Предполагается, что начальное положение, скорость и ускорение убегающего принадлежат заданному конусу. Кроме того, предполагается, что третья производная функции, задающей траекторию движения убегающего, в начальный момент времени также принадлежит этому конусу. Доказано, что если число преследователей меньше размерности пространства, то в игре можно избежать «мягкой поимки».

  7. Резольвентный метод, базирующийся на преобразованиях Лежандра, применен для интегрирования уравнений баллистики в среде со степенным по скорости сопротивлением, коэффициент которого падает линейно с высотой. Во втором приближении по градиенту плотности и с учетом уменьшения с высотой ускорения свободного падения g(y) задача сведена к линейному дифференциальному уравнению. Его решением получены универсальные формулы для неоднородностной добавки к резольвентной функции fn(b), а также к вертикальной и горизонтальной координатам δy(b), δx(b), b = tgθ - наклон траектории. Подробно рассмотрен случай квадратичного сопротивления.

  8. Иванов А.П., Шувалов Н.Д., Иванова Т.Б.
    Об условиях отрыва волчка на абсолютно шероховатой опоре, с. 103-113

    Обсуждается классическая задача о движении тяжелого симметричного твердого тела (волчка) с неподвижной точкой на горизонтальной плоскости. Ввиду одностороннего характера контакта, при определенных условиях возможны отрывы (подскоки) волчка. Известно два сценария отрывов, связанных с переменой знака нормальной реакции либо знака нормального ускорения, причем несовпадение указанных условий приводит к парадоксам. Для выяснения природы парадоксов подробно изучен пример маятника (стержня) с учетом ограниченности реального коэффициента трения. Показано, что в случае парадокса первого типа (невозможен ни отрыв, ни продолжение контакта) тело начинает скользить по опоре. В случае парадокса второго типа (возможен как отрыв, так и сохранение контакта) контакт сохраняется вплоть до перемены знака нормальной реакции, а затем нормальное ускорение при отрыве отлично от нуля.

  9. Рассматривается движение математического маятника, установленного на подвижной платформе. Платформа вращается вокруг заданной вертикали с постоянной угловой скоростью $\omega$ и одновременно совершает гармонические колебания с амплитудой $A$ и частотой $\Omega$ вдоль вертикали. Амплитуда колебаний предполагается малой по сравнению с длиной маятника $\ell$ $(A=\varepsilon \ell,\ 0<\varepsilon \ll 1) $. Рассмотрено три типа движений. Для первых двух типов маятник неподвижен относительно платформы и располагается вдоль ее оси вращения (висящий и перевернутый маятники). Для третьего типа движений маятник совершает периодические колебания с периодом, равным периоду вертикальных колебаний платформы. Эти колебания имеют амплитуду порядка $\varepsilon$ и при $\varepsilon = 0$ переходят в положение относительного равновесия, в котором маятник составляет постоянный угол с вертикалью. Третий тип движения существует, если угловая скорость вращения платформы достаточно большая ($\omega^2 \ell>g$, где $g$ - ускорение свободного падения). В статье решается задача об устойчивости этих трех типов движения маятника для малых значений $\varepsilon$. Рассмотрены как нерезонансные случаи, так и случаи, когда в системе реализуются резонансы второго, третьего и четвертого порядка. В пространстве трех безразмерных параметров задачи $g/(\omega^2 \ell)$, $\Omega / \omega$ и $\varepsilon$ выделены области устойчивости по Ляпунову и области неустойчивости. Исследование опирается на классические методы и алгоритмы Ляпунова, Пуанкаре и Биркгофа, а также на современные методы анализа динамических систем при помощи КАМ-теории.

  10. Рассмотрена динамика вращения твердого тела (ротатора) вокруг неглавной оси Oz, проходящей через его центр масс, с учетом диссипативных моментов: сухого трения Mfr, возникающего в опорах из-за поперечных динамических реакций, и квадратичного по угловой скорости ω аэродинамического сопротивления MR=-c|ω|ω. Показано, что уравнение динамики и вытекающие из него кинетики вращения тела качественно различны в общем и частном случаях инерционных и диссипативных параметров: осевого момента инерции Jzz, коэффициентов c и α=Mfr/√ε24 (ε - угловое ускорение). В частном случае равенства Jzz=c=α обнаружено отсутствие физически возможного решения для вращения по инерции в рамках динамики абсолютно твердого тела. Парадокс разрешается через нормализующее причинно-следственные связи введение запаздывающих величин ε(t-τ) и ω(t-τ), определяющих в согласии с принципом Даламбера поперечные реакции в опорах оси Mx,y(t-τ) и пару Mfr(t-τ). Последняя же определяла темп потери кинетического момента dKz(t)/dt в момент времени t. Кинетика вращения при этом имеет импульсивный характер так называемого фрикционно-аэродинамического удара. Также путем численного интегрирования продемонстрирована необычная угловая кинетика φ(t) затухающих колебаний ротатора под действием упругого момента Me=-κφ, характеризующаяся наличием двух фаз: кратковременного стартового участка, зависящего от начальных условий, затем резко переходящего в фазу почти синусоидальных колебаний с медленно убывающей амплитудой.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref