Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'устойчивость по Ляпунову':
Найдено статей: 11
  1. Рассматривается задача о назначении спектра показателей Ляпунова линейной управляемой системы с дискретным временем $$x(m+1)=A(m)x(m)+B(m)u(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n},\ u\in\mathbb R^{k}, \qquad (1)$$ посредством линейной по фазовым переменным обратной связи $u(m)=U(m)x(m)$ в малой окрестности спектра показателей свободной системы $$x(m+1)=A(m)x(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n}. \qquad (2)$$ Дополнительно требуется, чтобы норма матрицы обратной связи $U(\cdot)$ удовлетворяла липшицевой оценке по отношению к требуемому смещению показателей. Это свойство называется пропорциональной локальной управляемостью полного спектра показателей Ляпунова замкнутой системы $$x(m+1)=\bigl(A(m)+B(m)U(m)\bigr)x(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n}. \qquad (3)$$ Построен пример, показывающий, что найденные ранее достаточные условия пропорциональной локальной управляемости полного спектра показателей Ляпунова системы (3) (равномерная полная управляемость системы (1) и устойчивость показателей Ляпунова свободной системы (2)) не являются необходимыми.

  2. Для билинейной управляемой системы с периодическими коэффициентами получены достаточные условия равномерной глобальной асимптотической стабилизации нулевого решения. Доказательство основано на применении теоремы Красовского об асимптотической устойчивости в целом нулевого решения для периодических систем. Стабилизирующее управление построено по принципу обратной связи. Оно имеет вид квадратичной формы от фазовой переменной и является периодическим по времени.

  3. Пусть зафиксирован некоторый класс возмущений матрицы коэффициентов $A(\cdot)$ дискретной линейной однородной системы вида $$x(m+1)=A(m)x(m),\quad m\in\mathbb Z,\quad x\in\mathbb R^n,$$ с вполне ограниченной на $\mathbb Z$ матрицей $A(\cdot)$. Спектральным множеством этой системы, отвечающим заданному классу возмущений, называем совокупность полных спектров показателей Ляпунова возмущенных систем, когда возмущения пробегают весь заданный класс. Основное внимание в работе уделено классу ${\cal R}$ возмущенных систем вида $$y(m+1)=A(m)R(m)x(m),\quad m\in\mathbb Z,\quad y\in\mathbb R^n,$$ с вполне ограниченными на $\mathbb Z$ матрицами $R(\cdot)$, и его подклассам ${\cal R}_{\delta}$ с матрицами $R(\cdot)$, удовлетворяющими оценке $\sup_{m\in\mathbb Z}\|R(m)-E\|<\delta$, где $\delta>0$. Доказано, что если показатели Ляпунова исходной системы устойчивы, то спектральное множество $\lambda({\cal R})$, отвечающее классу ${\cal R}$, совпадает с множеством всех упорядоченных по возрастанию наборов из $n$ чисел, при этом для каждого $\Delta>0$ существует такое $\ell=\ell(\Delta)>0$, что для любого $\delta<\Delta$ спектральное множество $\lambda({\cal R}_{\ell\delta})$ содержит в себе $\delta$-окрестность полного спектра показателей Ляпунова невозмущенной системы.

  4. Казарников А.В., Ревина С.В.
    Бифуркации в системе Рэлея с диффузией, с. 499-514

    Рассматривается система реакции-диффузии с кубической нелинейностью, которая является бесконечномерным аналогом классической системы Рэлея и частным случаем системы Фитцью-Нагумо. Предполагается, что пространственная переменная изменяется на отрезке, на концах которого заданы однородные краевые условия Неймана. Известно, что в данном случае в системе Рэлея с диффузией существует пространственно-однородный автоколебательный режим, совпадающий с предельным циклом классической системы Рэлея. В настоящей работе показано существование счетного множества критических значений управляющего параметра, при которых возникают пространственно-неоднородные автоколебательные и стационарные режимы. Данные режимы устойчивы относительно возмущений, принадлежащих некоторым бесконечномерным инвариантным подпространствам системы, но неустойчивы во всем фазовом пространстве. Это свойство объясняет, почему в результате численных экспериментов при некоторых значениях параметра различным начальным условиям соответствуют нулевое, периодическое по времени или стационарное решение. Асимптотика вторичных решений построена методом Ляпунова-Шмидта. Явно найдены первые члены разложения, проанализированы формулы для общего члена асимптотики. Показано, что на инвариантных подпространствах происходит мягкая потеря устойчивости нулевого равновесия. Эволюция вторичных режимов при увеличении значений надкритичности исследована численно. Установлено, что с ростом значений надкритичности вторичные автоколебательные режимы постепенно сменяются стационарными. Амплитуда стационарных решений растет по мере увеличения надкритичности, а профиль асимптотически стремится к профилю меандра.

  5. Решена задача о построении асимптотически устойчивых произвольно заданных программных движений уравновешенного гиростата относительно центра масс. Решение получено синтезом активного программного управления, приложенного к системе тел, и стабилизирующего управления по принципу обратной связи. Управление построено в виде точного аналитического решения в классе непрерывных функций. Задача решена на основе прямого метода Ляпунова теории устойчивости с использованием функций Ляпунова со знакопостоянными производными.

  6. Результаты исследований Е.Л. Тонкова и Е.А. Панасенко распространяются на дифференциальные уравнения и управляемые системы с импульсным воздействием. В терминах функций Ляпунова и производной Кларка получены теоремы сравнения для систем с импульсным воздействием. Рассматривается множество $\mathfrak M\doteq\bigl\{(t,x)\in[t_0,+\infty)\times\mathbb{R}^n: x\in M(t)\bigr\},$ заданное непрерывной функцией $t\rightarrow M(t)$, где для каждого $t \in [t_0,+\infty)$ множество $M(t)$ непусто и компактно. Получены условия положительной инвариантности данного множества, равномерной устойчивости по Ляпунову и равномерной асимптотической устойчивости. Проведено сравнение с исследованиями других авторов, которые рассматривали вопросы устойчивости нулевого решения для аналогичных систем.

  7. Продолжено исследование условий положительной инвариантности и асимптотической устойчивости заданного множества относительно управляемой системы с импульсным воздействием. Рассматривается множество $\mathfrak M \doteq \bigl\{ (t,x) \in [t_0,+\infty) \times \mathbb{R}^n: x\in M(t)\bigr\}$, где функция $t\rightarrow M(t)$ непрерывна в метрике Хаусдорфа и для каждого $t \in [t_0,+\infty)$ множество $M(t)$ непусто и компактно. В терминах функций Ляпунова и производной Кларка получены условия слабой положительной инвариантности данного множества, слабой равномерной устойчивости по Ляпунову и слабой асимптотической устойчивости. Также доказана теорема сравнения для решений систем и уравнений с импульсами, следствием которой являются условия существования решений системы, асимптотически стремящихся к нулю. Полученные результаты проиллюстрированы на примере модели конкуренции двух видов, подверженных импульсному управлению в фиксированные моменты времени.

  8. В работе ставится задача об одноосной и трехосной ориентации системы двух соосных тел с моментами инерции, зависящими от времени (переменной структуры). Ориентация исследуется относительно кениговой и произвольной неинерциальной систем координат. Задача решена аналитически построением активного управления, приложенного к системе тел, по принципу обратной связи, реализуемой, например, двигателями малой тяги. Получены стабилизирующие управления и условия, при которых возможна желаемая ориентация, обладающая свойством асимптотической устойчивости. Поставленная задача решалась на основе метода функций Ляпунова и метода предельных уравнений и предельных систем, позволяющих использовать функции Ляпунова со знакопостоянными производными.

  9. Исследуется асимптотическое поведение решений разностных уравнений, правая часть каждого из которых в данный момент времени зависит не только от значения в предыдущий момент, но и от случайного параметра, принимающего значения в заданном множестве $\Omega.$ Получены условия устойчивости по Ляпунову и асимптотической устойчивости положения равновесия, выполненные для всех значений случайных параметров и выполненные с вероятностью единица. Показано, что задача о сосуществовании стохастических циклов различных периодов имеет решение, которое существенно отличается от известного результата А.Н. Шарковского для детерминированного разностного уравнения, а именно - при определенных условиях из существования стохастического цикла длины $k$ следует существование цикла любой длины $\ell>k$.

  10. Рассматривается плоское движение твердого тела в однородном поле тяжести. Тело подвешено на невесомой нерастяжимой нити. Предполагается, что во все время движения тела нить остается натянутой. Изучены нелинейные периодические колебания тела в окрестности его устойчивого положения равновесия на вертикали. Эти движения рождаются из малых (линейных) нормальных колебаний тела. Вопрос о существовании таких движений решается при помощи теоремы Ляпунова о голоморфном интеграле. Указан алгоритм построения этих движений при помощи метода канонических преобразований. Соответствующие решения представимы в виде рядов по малому параметру, характеризующему амплитуду порождающих нормальных колебаний. Дано строгое решение нелинейной задачи об орбитальной устойчивости построенных движений. Указаны возможные области параметрического резонанса (области неустойчивости), рассмотрены случаи резонансов третьего и четвертого порядков, а также нерезонансный случай. Исследование опирается на методы Ляпунова и Пуанкаре и КАМ-теорию.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref