Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Излагаются основы теории неосцилляции решений обыкновенного линейного однородного дифференциального уравнения n-го порядка с новыми доказательствами некоторых основных теорем: признаки неосцилляции, ее следствия, свойства неосцилляционных уравнений. Для уравнения второго порядка приводятся новые достаточные признаки неосцилляции.
-
Рассматриваются структурные, аппроксимативные и спектральные свойства нётеровых операторов индекса n и (−n), действующих между банаховыми пространствами B и D, где D изоморфно прямой сумме пространства B и конечномерного пространства E размерности n. Раскрыта роль теоремы С.М. Никольского о фредгольмовом операторе в изучении указанных свойств, а также в вопросе разрешимости уравнений с краевыми неравенствами. В случае сепарабельного гильбертова пространства B для однозначно разрешимых краевых задач предлагается основанная на разложении Э. Шмидта компактного оператора схема дискретизации, которая позволяет применить абстрактный вариант теоремы Рябенького–Филиппова о связи аппроксимации, устойчивости и сходимости.
-
Сходимость разностного метода для решения двумерного волнового уравнения с наследственностью, с. 78-92Рассмотрено волновое уравнение с двумя пространственными и одной временной независимыми переменными и эффектом наследственности вида $$\frac{\partial^2 u}{\partial t^2}=a^2\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + f\big(x,y,t,u(x,y,t),u_t(x,y,\cdot)\big),\\u_t(x,y,\cdot)=\left\{u(x,y,t+\xi),-\tau \leqslant \xi\leqslant 0\right\}. $$На основе идеи разделения текущего состояния и функции-предыстории сконструировано семейство сеточных методов для численного решения этого уравнения. По текущему состоянию строится полный аналог известного для уравнения без запаздывания метода с факторизацией, а влияние предыстории учитывается с помощью интерполяционных конструкций. Исследован порядок локальной погрешности алгоритма. Получена теорема о сходимости и порядке сходимости методов с помощью вложения в общую разностную схему систем с последействием. Приводятся результаты расчетов тестового примера с переменным запаздыванием.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.