Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'факторизация':
Найдено статей: 3
  1. Излагаются основы теории неосцилляции решений обыкновенного линейного однородного дифференциального уравнения n-го порядка с новыми доказательствами некоторых основных теорем: признаки неосцилляции, ее следствия, свойства неосцилляционных уравнений. Для уравнения второго порядка приводятся новые достаточные признаки неосцилляции.

  2. Рассматриваются структурные, аппроксимативные и спектральные свойства нётеровых операторов индекса n и (−n), действующих между банаховыми пространствами B и D, где D изоморфно прямой сумме пространства B и конечномерного пространства E размерности n. Раскрыта роль теоремы С.М. Никольского о фредгольмовом операторе в изучении указанных свойств, а также в вопросе разрешимости уравнений с краевыми неравенствами. В случае сепарабельного гильбертова пространства B для однозначно разрешимых краевых задач предлагается основанная на разложении Э. Шмидта компактного оператора схема дискретизации, которая позволяет применить абстрактный вариант теоремы Рябенького–Филиппова о связи аппроксимации, устойчивости и сходимости.

  3. Рассмотрено волновое уравнение с двумя пространственными и одной временной независимыми переменными и эффектом наследственности вида $$\frac{\partial^2 u}{\partial t^2}=a^2\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + f\big(x,y,t,u(x,y,t),u_t(x,y,\cdot)\big),\\u_t(x,y,\cdot)=\left\{u(x,y,t+\xi),-\tau \leqslant \xi\leqslant 0\right\}. $$На основе идеи разделения текущего состояния и функции-предыстории сконструировано семейство сеточных методов для численного решения этого уравнения. По текущему состоянию строится полный аналог известного для уравнения без запаздывания метода с факторизацией, а влияние предыстории учитывается с помощью интерполяционных конструкций. Исследован порядок локальной погрешности алгоритма. Получена теорема о сходимости и порядке сходимости методов с помощью вложения в общую разностную схему систем с последействием. Приводятся результаты расчетов тестового примера с переменным запаздыванием.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref