Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Аппроксимация функции цены дифференциальной игры с критерием, задаваемым условием минимизации, с. 536-561В статье рассматривается аппроксимация функции цены антагонистической дифференциальной игры с критерием, задаваемым условием минимизации некоторой величины вдоль реализовавшейся траектории, решениями стохастических игр с непрерывным временем и моментом остановки, управляемым одним из игроков. Отметим, что если в качестве вспомогательной игры выбрана стохастическая дифференциальная игра, то ее функция цены задается параболическим уравнением второй степени в частных производных с дополнительными ограничениями в форме неравенств, в то время как для случая вспомогательной игры с динамикой, задаваемой марковской цепью, функция цены определяется системой обыкновенных дифференциальных уравнений с дополнительными ограничениями. Развиваемый в статье метод аппроксимации основан на концепции стохастического поводыря, впервые предложенном в работах Н.Н. Красовского и А.Н. Котельниковой.
-
В работе рассматривается задача Коши для системы квазилинейных уравнений первого порядка специального вида. Система представлена в симметричном виде, фазовая переменная n-мерная. Рассматриваемая задача Коши получается из задачи Коши для одного уравнения Гамильтона-Якоби-Беллмана с помощью операции дифференцирования этого уравнения и краевого условия по переменной xi. Предполагается, что гамильтониан и начальное условие принадлежат классу непрерывно дифференцируемых функций. Гамильтониан является выпуклым по сопряженной переменной.
В работе предложен новый подход к определению обобщенного решения системы квазилинейных уравнений первого порядка. Обобщенное решение рассматривается в классе многозначных функций с выпуклыми компактными значениями. Доказаны теоремы существования, единственности и устойчивости решения по начальным данным. Получено полугрупповое свойство для введенного обобщенного решения. Показано, что потенциал для обобщенного решения системы квазилинейных уравнений совпадает с единственным минимаксным/вязкостным решением соответствующей задачи Коши для уравнения Гамильтона-Якоби-Беллмана, а в точках дифференцируемости минимаксного решения его градиент совпадает с обобщенным решением исходной задачи Коши. На основе этой связи получены свойства обобщенного решения задачи Коши для системы квазилинейных уравнений. В частности, показано, что введенное обобщенное решение совпадает с супердифференциалом минимаксного решения соответствующей задачи Коши и однозначно почти всюду.
С помощью характеристик уравнения Гамильтона-Якоби-Беллмана описана структура множества точек, в которых минимаксное решение недифференцируемо.
Показано, что свойство обобщенного решения для одного квазилинейного уравнения со скалярной фазовой переменной, введенное О.А. Олейник, может быть распространено на случай рассматриваемой системы квазилинейных уравнений.
-
Рассматривается «аддитивная» задача последовательного обхода мегаполисов (непустых конечных множеств), при посещении которых выполняются некоторые работы; перемещения и выполняемые работы оцениваются функциями стоимости, допускающими зависимость от списка заданий. Имеются ограничения различных типов, среди которых выделяются условия предшествования, используемые «в положительном направлении» (в интересах снижения сложности вычислений). Кроме того, в постановке присутствуют динамические ограничения, формирующиеся по мере выполнения заданий. Исследуемая постановка ориентирована на инженерные приложения, связанные с листовой резкой на машинах с ЧПУ. Исследуется подход к построению оптимальных решений на основе нестандартной версии динамического программирования (ДП). В рамках данного подхода учитываются ограничения различных типов, включая динамические ограничения, естественно возникающие при листовой резке деталей (в частности учитываются тепловые допуски, связанные с надежным отводом тепла из окрестностей точек врезки). При этом допускается комбинация «прямых» запретов на перемещения и выполнение врезки, а также системы штрафов. В последнем случае типично возникают функции стоимости с зависимостью от списка заданий. Применяемый вариант ДП позволяет оптимизировать точку старта, маршрут, отождествляемый с перестановкой индексов, и трассу (траекторию), согласованную с данным маршрутом. На этапе построения функции Беллмана используется экономичный вариант ДП, при котором весь массив значений этой функции не насчитывается, а определяется только система ее слоев (при условиях предшествования, типичных для задачи, связанной с листовой резкой, это приводит к существенному снижению вычислительных затрат). На основе ДП построен оптимальный алгоритм, реализованный на ПЭВМ; приведены результаты вычислительного эксперимента.
-
Рассматривается маршрутная задача о посещении сечений мультифункций с ограничениями в виде условий предшествования. Кроме того, по постановке предусматривается выполнение некоторых "работ" на упомянутых сечениях. Каждое решение определяется в виде упорядоченной пары, компоненты которой имеют смысл маршрута (перестановки индексов) и трассы (траектории) перемещений по сечениям мультифункций. Согласование трассы и маршрута реализуется на основе процедур последовательного выбора упорядоченных пар (пунктов прибытия и отправления) из декартовых "квадратов" сечений мультифункций, занумерованных в соответствии с маршрутом. Агрегирование стоимостей предполагается аддитивным; совокупный критерий включает стоимости (внешних) перемещений между сечениями мультифункций, внутренних "работ" и финального состояния. При построении расширения основной задачи, порождающего используемую далее функцию Беллмана, применяется эквивалентное преобразование ограничений: допустимость маршрутов по предшествованию заменяется допустимостью по вычеркиванию (заданий из списка), что соответствует варианту ограничений на текущие перемещения с одного множества на другое. Получен аналог уравнения Беллмана в виде процедуры преобразования слоёв функции Беллмана. Операция, определяющая данное преобразование, используется далее для построения эвристических алгоритмов, реализованных на ПЭВМ.
-
Рассматривается усложненный вариант задачи маршрутизации «на узкие места», а именно: исследуется задача последовательного обхода мегаполисов с условиями предшествования. Предполагается, что функции стоимости, а также «текущие» ограничения на выбор перемещений зависят от списка заданий, не выполненных на данный момент времени. Предложен вариант широко понимаемого динамического программирования, в рамках которого не предусматривается (при наличии условий предшествования) построение всего массива значений функции Беллмана; конструируются специальные слои упомянутой функции, реализующие в своей совокупности частичный (это способствует снижению вычислительной сложности) массив ее значений. На этой основе предлагается алгоритм определения значения задачи (глобального экстремума), при компьютерной реализации которого в памяти всякий раз находится только один слой функции Беллмана; найденное значение может использоваться при тестировании эвристик. Построен и реализован на ПЭВМ также оптимальный алгоритм «полного» решения маршрутной задачи, в рамках которого на этапе построения маршрута и трассы используются уже все слои функции Беллмана.
-
Оптимизирующие вставки в задачах маршрутизации и их реализация на основе динамического программирования, с. 565-578Рассматривается задача маршрутизации с условиями предшествования и функциями стоимости, зависящими от списка заданий, что отвечает потребностям инженерных приложений. В частности, упомянутые особенности имеются в постановках некоторых задач, возникающих в атомной энергетике и машиностроении. Исследуются вопросы, связанные с последовательным обходом мегаполисов и выполнением, при их посещении, некоторых (внутренних) работ. Предлагается процедура локального улучшения эвристических решений для задач ощутимой размерности, использующая вставки на основе динамического программирования. Последнее реализуется в виде варианта, не предусматривающего (при наличии условий предшествования) построение «полного» массива значений функции Беллмана. На этапе поиска локализации вставки предполагается ограничиваться вариантом беллмановской процедуры, доставляющей экстремум (локального) критерия без построения соответствующего решения в виде пары «маршрут-трасса». Более полная и более затратная в смысле ресурсов памяти процедура, включающая нахождение упомянутого (локально оптимального) решения, планируется после выбора локализации вставки.
-
Исследование посвящено построению параллельного алгоритма решения задачи «на узкие места», связанного с поиском разбиения конечного множества заданий на конечное число исполнителей (работников). Описывается алгоритм нахождения оптимального разбиения заданий с использованием метода динамического программирования с элементами параллельных вычислений при построении массива значений функции Беллмана. Выполнена оценка вычислительной сложности двух алгоритмов (с использованием и без использования параллельной структуры). Создана программа, с помощью которой проведен вычислительный эксперимент по решению поставленной задачи на суперкомпьютере «УРАН». Выполнен сравнительный анализ реализации алгоритмов как с использованием, так и без использования параллельной структуры. Представлена зависимость времени счета реализованной программы на суперкомпьютере от количества вычислительных ядер.
-
Рассматривается нелинейная задача оптимального управления с функционалом типа Майера. Для определения класса функций, содержащих оптимальные управления, применен метод характеристик уравнения Беллмана.
-
Обсуждается возможность применения теории слоений в теории управления.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.