Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'число вращения':
Найдено статей: 6
  1. Пусть $T\in C^{2+\varepsilon}(S^{1}\setminus \{x_{b}\})$, $\varepsilon>0$, — гомеоморфизм окружности с одной точкой излома $x_{b}$, в которой $T'(x)$ имеет разрыв первого рода и обе односторонние производные в точке $x_{b}$ строго положительные, и иррациональным числом вращения $\rho _{T}$. Предположим, что разложение числа вращения $\rho _{T}$ в непрерывную дробь, начиная с некоторого номера, совпадает с золотым сечением, т.е. $\rho _{T}=[m_{1},m_{2},\dots,m_{l},\,m_{l+1},\ldots],…,m_{s}=1$, $s> l>0$. Поскольку число вращения иррациональное, отображение $T$ является строго эргодическим, т.е. обладает единственной вероятностной инвариантной мерой $\mu_{T}$. В работе А.А. Джалилова и К.М. Ханина доказано, что вероятностная инвариантная мера $\mu_{G}$ любого гомеоморфизма окружности $G\in C^{2+\varepsilon}(S^{1}\setminus \{x_{b}\})$, $\varepsilon>0$, с одной точкой излома $ x_{b}$ и иррациональным числом вращения $\rho _{G}$ является сингулярной относительно меры Лебега $\lambda$ на окружности, т.е. существует измеримое подмножество $A \subset S^{1}$ такое, что $\mu_{G}(A)=1$ и $\lambda(A)=0$. Мы построим термодинамический формализм для гомеоморфизмов $T_{b}\in C^{2+\varepsilon}(S^{1}\setminus \{x_{b}\})$, $\varepsilon>0$, с одним изломом в точке $x_{b}$ и числом вращения, равным золотому сечению, т.е. $\rho _{T}:=\frac{\sqrt{5}-1}{2}$. Существенно используя построенный термодинамический формализм, мы изучили показатели сингулярности инвариантной меры $\mu_{T}$ гомеоморфизма $T$.

  2. Хорошо известно, что преобразование ренормгруппы $\mathcal{R}$ имеет единственную неподвижную точку $f_ {cr}$ в пространстве критических $C^{3}$-гомеоморфизмов окружности с одной кубической критической точкой $x_{cr}$ и числом вращения равным золотому сечению $\overline{\rho}: =\frac{\sqrt{5} -1}{2}.$ Обозначим через $Cr(\overline{\rho})$ множество всех критических отображений окружности $C^ {1}$-сопряженных к $f_{cr}.$ Пусть $f\in Cr(\overline{\rho})$ и $\mu:=\mu_{f}$ --- единственная вероятностная инвариантная мера для $f.$ Зафиксируем $\theta \in (0,1).$ Для каждого $n\geq 1$ определим $c_{n}:=c_{n}(\theta)$ такое, что $\mu([x_{cr}, c_{n}]) = \theta\cdot\mu([x_{cr}, f^{q_{n}} (x_{cr})]),$ где $q_{n}$ --- время первого возврата линейного вращения $f_{\overline{\rho}}.$ Мы исследуем закон сходимости перемасштабированного точечного процесса времени попадания. Мы показываем, что предельное распределение сингулярно относительно меры Лебега.

  3. Исследуется эволюция угла наклона оси вращения планеты в поле притяжения звезды и внешних планет, входящих в планетную систему. Считаем, что исследуемая планета является динамически-симметричным твердым телом $(A = B)$. Полагаем также, что сама планета и внешние планеты движутся по кеплеровским эллипсам вокруг звезды со средними движениями $\omega$ и $\omega_2,\ldots ,\omega_N$, где $N$ - число небесных тел, воздействующих на планету. В переменных Депри-Андуайе получена функция Гамильтона задачи в рамках спутникова приближения. Проведено осреднение функции Гамильтона по быстрым переменным вращательного и орбитального движений при условии отсутствия резонансов между быстрыми частотами указанных движений. Показано, что осредненная функция Гамильтона содержит, помимо классических параметров, параметры $D_i$, являющиеся функционалами на семействе орбит исследуемой планеты и внешних планет. Показано, что осредненная функция Гамильтона допускает разделение переменных и, как следствие, существует три первых интеграла в инволюции. При рассмотрении гравитационных моментов от внешних планет как малых возмущений, получены, с помощью интеграла энергии осредненных уравнений, явные приближенные формулы для угла нутации исследуемой планеты. Получены также приближенные формулы для возмущенного периода прецессии планеты. Проведены расчеты размаха колебаний по углу нутации планеты, возмущенного периода ее прецессии для частного случая планетной системы, состоящей из звезды, самой планеты и массивной внешней планеты (подобной Юпитеру) с симметрично расположенными орбитами, плоскости которых пересекаются под углом $\gamma$.

  4. Рассматривается движение близкой к автономной, периодической по времени гамильтоновой системы с двумя степенями свободы в окрестности тривиального равновесия. Предполагается, что система зависит от трех параметров, один из которых мал, и при его нулевом значении система автономна. Пусть в автономном случае для некоторого набора двух других параметров обе частоты малых линейных колебаний системы в окрестности равновесия равны нулю и ранг матрицы коэффициентов линеаризованных уравнений возмущенного движения равен трем, двум или единице. Исследуется структура областей устойчивости и неустойчивости тривиального равновесия системы в окрестности резонансной точки трехмерного пространства параметров, изучается вопрос о существовании, числе и устойчивости (в линейном приближении) периодических движений системы, аналитических по целым или дробным степеням малого параметра. В качестве приложения построены периодические движения динамически симметричного спутника (твердого тела) относительно центра масс в окрестности его стационарного вращения (цилиндрической прецессии) на слабоэллиптической орбите в рассматриваемом случае двух нулевых частот, доказана их неустойчивость.

  5. Рассматриваются два подхода к решению задачи математического моделирования обтекания метаемых тел: численное решение уравнений движения сплошной среды Навье-Стокса, осредненных по Рейнольдсу (RANS - Reynolds-averaged Navier–Stokes), с использованием модели турбулентности и прямое численное моделирование (DNS - Direct Numerical Simulation). Тестирование рассматриваемых подходов проводится при решении задачи обтекания тел вращения с простой геометрией: сферы и цилиндра с конической головной частью, для которых известны значения коэффициентов сопротивления при различных числах Маха. Проведено качественное и количественное сравнение результатов обтекания рассматриваемых тел сверхзвуковым потоком, полученным по методикам RANS и DNS. Апробация методики численного моделирования проводится для метаемого тела (снаряда) характерной формы. Представлены результаты численного моделирования обтекания снаряда для широкого диапазона параметров: чисел Маха и углов нутации. Выполнено сравнение расчетных значений коэффициентов сопротивления с эмпирическими эталонными зависимостями по законам 1943 и 1958 годов.

  6. В работе рассматриваются результаты решения задачи стационарного течения вязкой несжимаемой жидкости в плоском канале с обратным уступом и прогреваемой нижней стенкой в широком диапазоне числа Рейнольдса $100\leqslant \text{Re}\leqslant 1000$ и параметра расширения потока $1.11 \leqslant ER \leqslant 10$. Исследование выполнено путем численного интегрирования системы двумерных уравнений Навье-Стокса в переменных «скорость-давление» на равномерных сетках с шагом 1/300. Достоверность полученных результатов подтверждается их сравнением с литературными данными. Приводятся подробные картины течения и перегрева жидкости в зависимости от двух основных параметров задачи: $\text{Re}$ и $ER$. Показывается, что с одновременным ростом параметров $\text{Re}$ и $ER$ существенно усложняется структура течения - увеличиваются количество вихрей и их размеры вплоть до образования вихря за уступом с двумя центрами вращения. Также показывается, что характерная высота зоны прогрева течения слабо зависит от $\text{Re}$ и $ER$ и в конечном счете ближе к выходу из канала составляет приблизительно половину его высоты. Для всех центров вихрей определяются их основные характеристики: координаты, экстремумы функции тока, завихренности. Анализируется сложное немонотонное поведение профилей коэффициентов трения, сопротивления и теплоотдачи (числа Нуссельта) по длине канала. Показывается, что эти коэффициенты в одинаковой степени сильно зависят как от числа Рейнольдса, так и от параметра расширения канала, достигая своих максимальных значений при максимальных значениях $\text{Re}$ и $ER$.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref