Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В работе рассматривается задача программного управления движением динамически несимметричного уравновешенного шара на плоскости при помощи трех двигателей-маховиков при условии, что шар катится без проскальзывания. Центр масс механической системы совпадает с геометрическим центром шара. Найдены законы управления, обеспечивающие движение шара вдоль базовых траекторий (прямой и окружности), а также по произвольно заданной кусочно-гладкой траектории на плоскости. В данной работе предлагается кватернионная модель движения шара, которая позволяет обойтись без традиционного использования тригонометрических функций, а кинематические уравнения записать в виде линейных дифференциальных уравнений, исключающих недостатки связанные с применением углов Эйлера. Решение поставленной задачи осуществляется с применением кватернионной функции времени, которая определяется видом траектории и законом движения точки контакта шара с плоскостью. Приведен пример управления движением шара и выполнена визуализация движения системы шар-маховики в пакете компьютерной алгебры.
-
Рассматривается шар Чаплыгина на плоскости, на который действует сила трения, удовлетворяющая условию: (F,u)<0 при u≠0 и F=0 при u=0, где u - скорость проскальзывания шара. Контакт с опорной плоскостью предполагается точечным (иными словами, отсутствуют пятно контакта и момент трения верчения). Основной задачей работы является нахождение множества возможных стационарных (финальных) движений и определение типов их устойчивости.
В работе показано, что стационарных движений возможно ровно три; все они представляют собой равномерные и прямолинейные качения шара по прямой без проскальзывания, при которых он вращается вокруг одной из главных осей тензора инерции. При этом вращение вокруг оси наибольшего момента инерции устойчиво, вокруг среднего и наименьшего неустойчиво.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.