Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'экстраполяция':
Найдено статей: 1
  1. Рассматривается уравнение в частных производных первого порядка с эффектом наследственности:

    $$ \frac{\partial u(x,t)}{\partial t} + a \frac{\partial u(x,t)}{\partial x} = f ( x, t, u(x,t), u_t(x,\cdot)),$$ $$u_t(x,\cdot) = \{u(x,t+s), -\tau\leqslant s <0\}.$$

    Для такого уравнения, с позиций принципа разделения конечномерной и бесконечномерной составляющих состояния, строятся сеточные методы: аналог семейства схем бегущего счета, аналог схемы Кранка-Николсон, метод аппроксимации на середину квадрата. Для учета эффекта наследственности применяются одномерная и двойная кусочно-линейная интерполяции и экстраполяция продолжением. Доказывается, что рассмотренные методы имеют порядки локальной погрешности: соответственно $O(h+\Delta)$, $O(h+\Delta^2)$ и $O(h^2+\Delta^2)$, где $h$ - шаг дискретизации по пространственной переменной, $\Delta$ - шаг дискретизации по временной переменной. Исследуются свойства двойной кусочно-линейной интерполяции. Используя результаты общей теории разностных схем, установлены условия устойчивости предложенных методов. С помощью вложения в общую схему численных методов для функционально-дифференциальных уравнений получены теоремы о порядках сходимости сконструированных алгоритмов. Приведены тестовые примеры по сравнению погрешностей методов.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref