Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В статье рассматривается экстремальная задача маршрутизации с ограничениями. В общей формулировке предполагается, что объектами посещения являются любые непустые конечные множества — мегаполисы. Основной прикладной задачей, рассматриваемой в данном исследовании, является задача оптимизации траектории движения инструмента для станков листовой резки с ЧПУ, известная как проблема пути резания. Эта проблема возникает на этапе разработки управляющих программ для станков с ЧПУ. Возможны и другие приложения. В частности, результаты исследования могут быть использованы в задаче минимизация дозы облучения при демонтаже системы радиационно-опасных элементов после аварий на АЭС и в транспортных проблемах. В качестве ограничений исследуются ограничения предшествования. Они могут быть использованы для уменьшения вычислительной сложности. В качестве основного метода исследования использовалось широко понимаемое динамическое программирование. Предлагаемая реализация метода учитывает ограничения предшествования и зависимость целевых функций от списка задач. Последняя относится к классу очень сложных состояний, которые определяют допустимость маршрута на каждом шаге маршрутизации, в зависимости от уже выполненных или, наоборот, еще не завершенных задач. Применительно к задаче резки зависимость целевой функции от списка задач позволяет уменьшать термические деформации материала при резке. В работе математическая формализация экстремальной задачи маршрутизации с дополнительными ограничениями, описание метода и полученный с его помощью точный алгоритм. Оптимизации подлежат порядок выполнения задач, конкретная траектория процесса, и его начальная точка.
динамическое программирование, дополнительные ограничения, мегаполисы, маршрутизация, станки листовой резки с ЧПУ, проблема оптимизации пути инструментаThe paper deals with an extremal routing problem with constraints. In the general formulation, it is assumed that the objects of visiting are any non-empty finite sets — megalopolises. The main applied problem considered in this study is the tool path optimization problem for CNC sheet-cutting machines, known as the Cutting Path Problem. This problem arises at the stage of developing control programs for CNC machines. Other applications are also possible. In particular, the results obtained in the chapter can be used in the problem of minimizing the radiation dose when dismantling a system of radiation-hazardous elements after accidents at nuclear power plants and in transport problems. Among tasks constraints, the precedence constraints are investigated. These constraints can be used to reduce computational complexity. As the main method, the study used broadly understood dynamic programming. The offered realization of the method takes into account the precedence constraints and the dependence of the objective functions on the task list. This dependence belongs to the class of very complex conditions that determine the route admissibility at each routing step, depending on the tasks already completed or, on the contrary, not yet completed. As applied to the Cutting Path Problem, the dependence of the objective function on the task list makes it possible to reduce thermal deformations of the material during cutting. The chapter provides a mathematical formalization of an extremal routing problem with additional constraints, a description of the method, and the exact algorithm obtained with its help. The order of task execution, the specific trajectory of the process, and the starting point are optimized.
-
Рассматриваются вопросы, связанные с решением аддитивной задачи последовательного обхода множеств с ограничениями предшествования и функциями стоимости, допускающими зависимость от списка заданий. В качестве базового метода используется широко понимаемое динамическое программирование (ДП), дополняемое в случае задач ощутимой размерности декомпозициями семейства заданий и преобразованием параметров исходной задачи. Возможные применения связаны, в частности, с задачей управления инструментом при фигурной листовой резке деталей на машинах с ЧПУ. В этой задаче важным обстоятельством является учет условий предшествования, имеющих, в частности, следующий смысл: в случае детали с отверстиями резка каждого из внутренних контуров (отвечающих отверстиям) должна предшествовать резке внешнего контура. Сам критерий качества в данной задаче, как правило, является аддитивным. Другой тип ограничений касается избежания термических деформаций деталей. При использовании подхода с применением штрафов за нарушение условий, связанных с эффективным отводом тепла при выполнении врезки, возникают функции стоимости, допускающие зависимость от списка заданий, выполненных на текущий момент времени. Заметим, что в другой прикладной задаче, а именно в задаче о демонтаже радиационно опасных объектов, возникают функции стоимости с зависимостью от списка заданий, не выполненных на данный момент (а, следовательно, касающихся недемонтированных объектов). В итоге мы приходим к очень общей задаче с ограничениями предшествования и функциями стоимости с зависимостью от списка заданий. Применяемая в случае ощутимой размерности декомпозиция с последующей реализацией ДП требует, с одной стороны, разработки методов кластеризации, а, с другой, построения адекватной конструкции распределения глобальных условий предшествования по кластерам. В теоретической части работы обсуждается случай двух кластеров, который позволяет охватить единой схемой целый ряд практически интересных задач диапазонного (в смысле размерности) типа. Указан алгоритм построения композиционного решения, включающий этап обучения кластеризации на основе жадного алгоритма. Данный «композиционный» алгоритм реализован на ПЭВМ; проведен вычислительный эксперимент.
Some constructions for solving routing problems using decompositions and transformations of target sets, pp. 518-540Issues related to solving the additive problem of sequential traversal of sets with precedence restrictions and cost functions that allow dependence on the list of tasks are considered. The basic method is a broadly understood dynamic programming (DP), supplemented in the case of problems of appreciable dimension by decompositions of the family of tasks and transformation of the parameters of the original problem. Possible applications are related, in particular, to the problem of tool control in figured sheet cutting of parts on CNC machines. In this problem, an important circumstance is taking into account the precedence conditions, which have, in particular, the following meaning: in the case of a part with holes, cutting of each of the internal contours (corresponding to the holes) should precede cutting of the external contour. The quality criterion itself in this problem, as a rule, is additive. Another type of constraints concerns avoiding thermal deformations of parts. When using the approach with penalties for violating the conditions associated with effective heat dissipation during cutting, cost functions arise that allow dependence on the list of tasks completed to date. Note that in another applied problem, namely, in the problem of dismantling radiation hazardous objects, cost functions arise with dependence on the list of tasks that have not been completed at the moment (and, consequently, concern the objects that have not been dismantled). As a result, we arrive at a very general problem with precedence constraints and cost functions with dependence on the list of tasks. The decomposition applied in the case of a noticeable dimensionality with subsequent implementation of the DP requires, on the one hand, the development of clustering methods, and, on the other, the construction of an adequate structure for distributing global precedence conditions among clusters. In the theoretical part of the work, the case of two clusters is discussed, which makes it possible to cover with a single scheme a number of practically interesting problems of a range (in terms of dimensionality) type. An algorithm for constructing a composite solution is indicated, including a stage of clustering training based on a greedy algorithm. This “composite” algorithm is implemented on a PC; a computational experiment was carried out.
-
Рассматривается задача последовательного обхода мегаполисов (непустых конечных множеств) с условиями предшествования и функциями стоимости, зависящими от списка заданий. Постановка ориентирована на инженерные задачи, возникающие в атомной энергетике и связанные со снижением облучаемости работников, а также в машиностроении (маршрутизация движения инструмента при листовой резке на машинах с ЧПУ). Предполагается, что исследуемая задача дискретной оптимизации имеет ощутимую размерность, что вынуждает к использованию эвристик. Обсуждается процедура локального улучшения качества последних посредством применения оптимизирующих мультивставок, определяемых всякий раз в виде конечного дизъюнктного набора вставок. Предполагается, что в каждой вставке используется процедура оптимизации на основе широко понимаемого динамического программирования. Показано, что в «аддитивной» маршрутной задаче вышеупомянутого типа (с ограничениями и усложненными функциями стоимости) улучшения достигаемого результата также агрегируются аддитивно. Предлагаемая конструкция допускает реализацию в виде параллельной процедуры с использованием МВС; при этом отдельные вставки выделяются вычислительным узлам и формируются независимо.
We consider a problem of sequential traversal of megalopolises (nonempty finite sets) with travel cost functions depending on the set of pending tasks and precedence constraints. Its formulation is aimed at engineering problems in fission power generation connected with minimizing the exposure of staff to radiation and in machine engineering (routing of a CNC sheet cutting machine's tool). This discrete optimization problem is assumed to be sufficiently large-scale to necessitate the use of heuristics. We consider a procedure of local improvement for heuristics through a successive application of optimizing multi-inserts-finite disjoint sets of inserts. Each insert is assumed to be optimized by means of a broadly understood dynamic programming procedure. We show that in an “additive” routing problem of this kind (with precedence constraints and complex travel cost functions) the result's improvements are also aggregated additively. The proposed construction admits a parallel implementation for multiprocessor systems; in this case, the inserts are distributed to computational nodes and formed in an independent way.
-
Рассматривается «аддитивная» задача последовательного обхода мегаполисов (непустых конечных множеств), при посещении которых выполняются некоторые работы; перемещения и выполняемые работы оцениваются функциями стоимости, допускающими зависимость от списка заданий. Имеются ограничения различных типов, среди которых выделяются условия предшествования, используемые «в положительном направлении» (в интересах снижения сложности вычислений). Кроме того, в постановке присутствуют динамические ограничения, формирующиеся по мере выполнения заданий. Исследуемая постановка ориентирована на инженерные приложения, связанные с листовой резкой на машинах с ЧПУ. Исследуется подход к построению оптимальных решений на основе нестандартной версии динамического программирования (ДП). В рамках данного подхода учитываются ограничения различных типов, включая динамические ограничения, естественно возникающие при листовой резке деталей (в частности учитываются тепловые допуски, связанные с надежным отводом тепла из окрестностей точек врезки). При этом допускается комбинация «прямых» запретов на перемещения и выполнение врезки, а также системы штрафов. В последнем случае типично возникают функции стоимости с зависимостью от списка заданий. Применяемый вариант ДП позволяет оптимизировать точку старта, маршрут, отождествляемый с перестановкой индексов, и трассу (траекторию), согласованную с данным маршрутом. На этапе построения функции Беллмана используется экономичный вариант ДП, при котором весь массив значений этой функции не насчитывается, а определяется только система ее слоев (при условиях предшествования, типичных для задачи, связанной с листовой резкой, это приводит к существенному снижению вычислительных затрат). На основе ДП построен оптимальный алгоритм, реализованный на ПЭВМ; приведены результаты вычислительного эксперимента.
On the question of the optimization of permutations in the problem with dynamic constraints, pp. 363-381The “additive” problem of sequentially visiting megalopolises (nonempty finite sets) is considered; some tasks are executed as the megalopolises are visited. Permutations and operations are evaluated by cost functions that admit a dependence on the list of tasks. There are restrictions of different types, which include precedence conditions used in the “positive direction” (to reduce the complexity of calculations). In addition, this conception involves dynamical restrictions that are formed in the process of task execution. This conception is oriented to engineering applications associated with sheet cutting on CNC machines. An approach to constructing optimal solutions based on a nonstandard version of dynamic programming (DP) is investigated. This approach takes into account restrictions of different types, including dynamic constraints which naturally arise in sheet cutting applications (in particular, it takes into account heat tolerances related to diffusion of heat in the vicinities of tie-in points). In this regard, a combination of “direct” interdictions of movements and cutting and a system of penalties is allowed; in the latter case, cost functions with a dependence on the list of tasks arise. The variant of DP that is used allows one to optimize the selection of a starting point, the route, which is identified with a permutation of the indexes, and the trajectory corresponding to the above-mentioned route. An economical variant of DP is used at the stage of construction of the Bellman function. This conception allows avoiding calculation of the whole array of values of this function; instead, only the system of its layers is defined (in the case of using the precedence conditions, which are typical of the problem of sheet cutting, this conception results in a considerable reduction of calculation costs). An optimal DP-based algorithm is constructed and realized on PC, and the results of the computational experiment are presented.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.