Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В статье рассматривается экстремальная задача маршрутизации с ограничениями. В общей формулировке предполагается, что объектами посещения являются любые непустые конечные множества — мегаполисы. Основной прикладной задачей, рассматриваемой в данном исследовании, является задача оптимизации траектории движения инструмента для станков листовой резки с ЧПУ, известная как проблема пути резания. Эта проблема возникает на этапе разработки управляющих программ для станков с ЧПУ. Возможны и другие приложения. В частности, результаты исследования могут быть использованы в задаче минимизация дозы облучения при демонтаже системы радиационно-опасных элементов после аварий на АЭС и в транспортных проблемах. В качестве ограничений исследуются ограничения предшествования. Они могут быть использованы для уменьшения вычислительной сложности. В качестве основного метода исследования использовалось широко понимаемое динамическое программирование. Предлагаемая реализация метода учитывает ограничения предшествования и зависимость целевых функций от списка задач. Последняя относится к классу очень сложных состояний, которые определяют допустимость маршрута на каждом шаге маршрутизации, в зависимости от уже выполненных или, наоборот, еще не завершенных задач. Применительно к задаче резки зависимость целевой функции от списка задач позволяет уменьшать термические деформации материала при резке. В работе математическая формализация экстремальной задачи маршрутизации с дополнительными ограничениями, описание метода и полученный с его помощью точный алгоритм. Оптимизации подлежат порядок выполнения задач, конкретная траектория процесса, и его начальная точка.
-
Локальные вставки на основе динамического программирования в задаче маршрутизации с ограничениями, с. 56-75Рассматривается процедура встраивания оптимизируемых фрагментов маршрутных решений в глобальные решения «большой» задачи, определяемые эвристическими алгоритмами. Постановка задачи маршрутизации учитывает некоторые особенности инженерной задачи о последовательной резке деталей, имеющих каждая один внешний и, возможно, несколько внутренних контуров. Последние должны подвергаться резке раньше внешнего, что приводит к большому числу условий предшествования. Данные условия активно используются в интересах снижения сложности вычислений. Тем не менее размерность задачи остается достаточно большой, что, в частности, не позволяет применять «глобальное» динамическое программирование и вынуждает к использованию эвристических алгоритмов (исследуемая задача относится к числу труднорешаемых в традиционном понимании). Поэтому представляет интерес разработка методов коррекции решений, получаемых на основе упомянутых алгоритмов. В настоящей работе такая коррекция реализуется посредством замены фрагментов (упомянутых решений), имеющих умеренную размерность, оптимальными «блоками», конструируемыми на основе динамического программирования с локальными условиями предшествования, которые согласуются с ограничениями исходной «большой» задачи. Предлагаемая замена не ухудшает, а, в типичных случаях, улучшает качество исходного «эвристического» решения, что подтверждается вычислительным экспериментом на многоядерной ПЭВМ.
Предложенный алгоритм реализован в итерационном режиме: полученное после первой вставки на основе динамического программирования решение в виде пары «маршрут-трасса» принимается за исходное, для которого вновь конструируется вставка. При этом начало этой новой вставки выбирается случайно в пределах, определяемых возможностями формирования скользящего «окна» ощутимой, но все же достаточной для применения экономичной версии динамического программирования размерности. Далее процедура повторяется. Работа итерационного алгоритма иллюстрируется решением модельных задач, включая варианты с достаточно плотной «упаковкой» заготовок деталей на листе, что типично для машиностроительного производства.
-
Рассматриваются вопросы, связанные с решением аддитивной задачи последовательного обхода множеств с ограничениями предшествования и функциями стоимости, допускающими зависимость от списка заданий. В качестве базового метода используется широко понимаемое динамическое программирование (ДП), дополняемое в случае задач ощутимой размерности декомпозициями семейства заданий и преобразованием параметров исходной задачи. Возможные применения связаны, в частности, с задачей управления инструментом при фигурной листовой резке деталей на машинах с ЧПУ. В этой задаче важным обстоятельством является учет условий предшествования, имеющих, в частности, следующий смысл: в случае детали с отверстиями резка каждого из внутренних контуров (отвечающих отверстиям) должна предшествовать резке внешнего контура. Сам критерий качества в данной задаче, как правило, является аддитивным. Другой тип ограничений касается избежания термических деформаций деталей. При использовании подхода с применением штрафов за нарушение условий, связанных с эффективным отводом тепла при выполнении врезки, возникают функции стоимости, допускающие зависимость от списка заданий, выполненных на текущий момент времени. Заметим, что в другой прикладной задаче, а именно в задаче о демонтаже радиационно опасных объектов, возникают функции стоимости с зависимостью от списка заданий, не выполненных на данный момент (а, следовательно, касающихся недемонтированных объектов). В итоге мы приходим к очень общей задаче с ограничениями предшествования и функциями стоимости с зависимостью от списка заданий. Применяемая в случае ощутимой размерности декомпозиция с последующей реализацией ДП требует, с одной стороны, разработки методов кластеризации, а, с другой, построения адекватной конструкции распределения глобальных условий предшествования по кластерам. В теоретической части работы обсуждается случай двух кластеров, который позволяет охватить единой схемой целый ряд практически интересных задач диапазонного (в смысле размерности) типа. Указан алгоритм построения композиционного решения, включающий этап обучения кластеризации на основе жадного алгоритма. Данный «композиционный» алгоритм реализован на ПЭВМ; проведен вычислительный эксперимент.
-
Рассматривается задача маршрутизации перемещений с ограничениями и усложненными функциями стоимости. Предполагается, что объекты посещения суть мегаполисы (непустые конечные множества), при посещении которых должны выполняться некоторые работы, именуемые далее внутренними. По постановке задачи имеются ограничения в виде условий предшествования. Стоимость перемещений зависит от списка заданий, которые не выполнены на момент перемещения. Ситуация такого рода возникает, в частности, при аварийных ситуациях, связанных с работой АЭС и подобных происходящим в Чернобыле и Фукусиме. Речь идет об утилизации источников радиоактивного излучения, осуществляемой последовательно во времени; в этом случае исполнитель находится под воздействием источников, которые не были демонтированы на момент соответствующего перемещения. За счет этого в функциях стоимости, оценивающих воздействие радиации на исполнителя, возникает зависимость от списка невыполненных заданий. Последние состоят в том или ином варианте выключения соответствующего источника. В настоящем исследовании излагается подход к решению данной задачи параллельным алгоритмом, реализуемым на суперкомпьютере «УРАН».
-
Динамическое программирование в обобщенной задаче «на узкие места» и оптимизация точки старта, с. 348-363Рассматривается одна «неаддитивная» задача маршрутизации перемещений, являющаяся обобщением известной задачи «на узкие места». Предполагается заданным параметр в виде положительного числа, степень которого определяет вес соответствующего этапа системы перемещений. Варьированием параметра можно сделать доминирующими начальные или, напротив, финальные этапы перемещения. Вариант агрегирования стоимостей с упомянутыми весами соответствует идейно постановке задачи «на узкие места», но открывает возможности исследования новых постановок задач маршрутизации с ограничениями. Предполагается, однако, что постановка осложнена зависимостью стоимостей от списка заданий и включает ограничения в виде условий предшествования. Кроме того, в интересах оптимизации допускается произвольный выбор начального состояния из заданного априори множества. Для построения решения используется аппарат широко понимаемого динамического программирования. Исследуется возможность реализации глобального экстремума с любой степенью точности в условиях, когда множество возможных начальных состояний не является конечным.
-
Рассматривается задача последовательного обхода мегаполисов (непустых конечных множеств) с условиями предшествования и функциями стоимости, зависящими от списка заданий. Постановка ориентирована на инженерные задачи, возникающие в атомной энергетике и связанные со снижением облучаемости работников, а также в машиностроении (маршрутизация движения инструмента при листовой резке на машинах с ЧПУ). Предполагается, что исследуемая задача дискретной оптимизации имеет ощутимую размерность, что вынуждает к использованию эвристик. Обсуждается процедура локального улучшения качества последних посредством применения оптимизирующих мультивставок, определяемых всякий раз в виде конечного дизъюнктного набора вставок. Предполагается, что в каждой вставке используется процедура оптимизации на основе широко понимаемого динамического программирования. Показано, что в «аддитивной» маршрутной задаче вышеупомянутого типа (с ограничениями и усложненными функциями стоимости) улучшения достигаемого результата также агрегируются аддитивно. Предлагаемая конструкция допускает реализацию в виде параллельной процедуры с использованием МВС; при этом отдельные вставки выделяются вычислительным узлам и формируются независимо.
-
Рассматривается задача о допустимой маршрутизации системы циклов, каждый из которых включает внешнее перемещение и работы, связанные с посещением мегаполисов (непустых конечных множеств). В исходной постановке задано ограничение ресурсного характера, которое должно соблюдаться на каждом цикле в процессе перемещений. Условия разрешимости в данной задаче связываются с экстремумом вспомогательной задачи маршрутизации «на узкие места» без упомянутого ограничения, в которой используется аппарат широко понимаемого динамического программирования. Частным случаем постановки является известная задача курьера «на узкие места», которая, в частности, может использоваться, как представляется, для целей прокладывания маршрутов транспортного средства (самолет, вертолет), имеющего целью осуществить заданную систему перевозок с ограниченным на каждом перелете запасом топлива. Построен алгоритм, реализованный на ПЭВМ.
-
Рассматривается минимаксная задача маршрутизации с элементами декомпозиции. В простейшем случае предполагается, что все множество заданий разбито в сумму двух подмножеств (кластеров), причем выполнение заданий из второго подмножества может быть начато только после завершения всех заданий из первого. Для упомянутой двухкластерной задачи построен алгоритм для нахождения оптимального композиционного решения, включающего маршрут (перестановку индексов заданий) и точку старта, базирующийся на использовании широко понимаемого динамического программирования. На основе данного подхода построен также алгоритм для решения задачи маршрутизации в случае произвольного упорядоченного конечного набора кластеров; алгоритм реализован на ПЭВМ, проведен вычислительный эксперимент. Возможные применения могут быть связаны с некоторыми логистическими задачами в малой авиации, когда требуется обеспечить посещение многих пунктов одним транспортным средством (самолет, вертолет) с ограниченной дальностью беспосадочного полета.
-
Рассматривается усложненный вариант задачи последовательного обхода мегаполисов с ограничениями в виде условий предшествования. Накладываются дополнительные ограничения на характер стыковки фрагментов внешних перемещений и внутренних работ (внешних и внутренних по отношению к мегаполисам). Предполагается, что стоимости внешних перемещений и внутренних работ явным образом зависят от списка заданий. Построена процедура типа динамического программирования и (на её основе) алгоритм на функциональном уровне.
-
В статье рассматривается общий случай маршрутной задачи дискретной оптимизации, осложненной условиями предшествования; изучается влияние условий предшествования на вычислительную сложность решений таких задач методом динамического программирования. Особенность применяемого метода динамического программирования заключается в его «экономичности»: подзадачи, не соблюдающие условия предшествования и, следовательно, не участвующие в оптимальном решении, не рассматриваются, что позволяет сберечь и вычислительную мощность, и память.
Этот метод c 2004 года используется А.Г. Ченцовым и его соавторами, но степень экономии ресурсов исследовалось мало. Мы предлагаем подход к решению этой проблемы, основанный на комбинаторном анализе числа подзадач, существенных в смысле условий предшествования. Применяя известные комбинаторные правила сложения и произведения, мы получили результат для важных частных случаев условий предшествования: а) «независимые» наборы условий предшествования; б) «цепь» условий предшествования - когда условия задают линейный порядок; в) случай, когда в графе предшествования нет неориентированных циклов, и исходящая степень любой вершины не превышает единицы. Последний случай представляет собой условия предшествования, встречающихся в практической задаче маршрутизации движений инструмента в машинах листовой резки и соответствует требованию вырезать внутренний контур прежде внешнего.
В связи с более сложной структурой случая в) по сравнению с остальными для него вместо аналитической формулы представлен алгоритм; алгоритм реализован на языке C++, зависимость его вычислительной сложности от числа связанных условиями предшествования объектов имеет не более чем квадратичный порядок. В дальнейшем мы предполагаем расширить область применения нашего подхода до более общих вариантов условий предшествования. Отметим также, что наш подход не зависит от критерия оптимальности, соответственно, может применяться для анализа сложности решения методом динамического программирования в произвольных маршрутных задачах с условиями предшествования.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.