Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В работе рассматривается задача программного управления движением динамически несимметричного уравновешенного шара на плоскости при помощи трех двигателей-маховиков при условии, что шар катится без проскальзывания. Центр масс механической системы совпадает с геометрическим центром шара. Найдены законы управления, обеспечивающие движение шара вдоль базовых траекторий (прямой и окружности), а также по произвольно заданной кусочно-гладкой траектории на плоскости. В данной работе предлагается кватернионная модель движения шара, которая позволяет обойтись без традиционного использования тригонометрических функций, а кинематические уравнения записать в виде линейных дифференциальных уравнений, исключающих недостатки связанные с применением углов Эйлера. Решение поставленной задачи осуществляется с применением кватернионной функции времени, которая определяется видом траектории и законом движения точки контакта шара с плоскостью. Приведен пример управления движением шара и выполнена визуализация движения системы шар-маховики в пакете компьютерной алгебры.
кватернионы, программное управление, неголономная связь, геометрическая динамика, плавное движение, сферо-роботThis paper deals with the problem of program control of the motion of a dynamically asymmetric balanced ball on the plane using three flywheel motors, provided that the ball rolls without slipping. The center of mass of the mechanical system coincides with the geometric center of the ball. Control laws are found to ensure the motion of the ball along the basic trajectories (line and circle), as well as along an arbitrarily given piecewise smooth trajectory on the plane. In this paper, we propose a quaternion model of ball motion. The model does not require using the traditional trigonometric functions. Kinematic equations are written in the form of linear differential equations eliminating the disadvantages associated with the use of Euler angles. The solution of the problem is carried out using the quaternion function of time, which is determined by the type of trajectory and the law of motion of the point of contact of the ball with the plane. An example of ball motion control is given and a visualization of the ball-flywheel system motion in a computer algebra package is presented.
-
Рассматривается шар Чаплыгина на плоскости, на который действует сила трения, удовлетворяющая условию: (F,u)<0 при u≠0 и F=0 при u=0, где u - скорость проскальзывания шара. Контакт с опорной плоскостью предполагается точечным (иными словами, отсутствуют пятно контакта и момент трения верчения). Основной задачей работы является нахождение множества возможных стационарных (финальных) движений и определение типов их устойчивости.
В работе показано, что стационарных движений возможно ровно три; все они представляют собой равномерные и прямолинейные качения шара по прямой без проскальзывания, при которых он вращается вокруг одной из главных осей тензора инерции. При этом вращение вокруг оси наибольшего момента инерции устойчиво, вокруг среднего и наименьшего неустойчиво.
The Chaplygin ball on a plane is considered under the action of the friction force which satisfies the following condition: (F,u)<0 as u u≠0 and F=0 as u=0, where u is the gliding velocity. The ball is supposed to have a point contact with the supporting plane (this means that the contact spot is absent and also there is no rotation friction torque). The main task of the paper is to determine a set of possible stationary (or final) motions and their stability.
In the current paper it is shown that exactly three stationary motions are possible; these motions represent straightline uniform rolling motions of the ball without sliding, at that the ball is rotating around one of the primary axes of the inertia tensor. Rotation around the axis of the greatest moment of inertia is stable, around the middle one and the lowest one it is unstable.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.