Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассмотрен класс задач управления по быстродействию в трехмерном пространстве с шаровой вектограммой скоростей. В качестве целевого множества выбрана гладкая регулярная кривая $\Gamma.$ Выделены псевдовершины — характеристические точки на $\Gamma,$ отвечающие за возникновение сингулярности у функции оптимального результата. Выявлены характерные особенности структуры сингулярного множества, относящегося к семейству биссектрис. Найдено аналитическое представление для крайних точек биссектрисы, соответствующих фиксированной псевдовершине. В качестве иллюстрации эффективности развиваемых методов решения негладких динамических задач приведен пример численно-аналитического построения разрешающих конструкций задачи управления по быстродействию.
задача быстродействия, рассеивающая поверхность, биссектриса, псевдовершина, крайняя точка, кривизна, сингулярное множество, репер Френе
On the structure of the singular set of solutions in one class of 3D time-optimal control problems, pp. 471-486A class of time-optimal control problems in terms of speed in three-dimensional space with a spherical velocity vector is considered. A smooth regular curve $\Gamma$ was chosen as the target set. Pseudo-vertices — characteristic points on $\Gamma,$ responsible for the appearance of a singularity in the optimal result function, are selected. The characteristic features of the structure of a singular set belonging to the family of bisectors are revealed. An analytical representation is found for the extreme points of the bisector corresponding to a fixed pseudo-vertex. As an illustration of the effectiveness of the developed methods for solving nonsmooth dynamic problems, an example of the numerical-analytical construction of resolving structures of a control problem in terms of speed is given.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.