Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В работе описывается классификация локально конформного почти косимплектического многообразия ($\mathcal{LCAC_{S}}$-многообразия) в соответствии с тензором конгармонической кривизны. В частности, были получены необходимые условия $\Phi$ инвариантности тензора конгармонической кривизны на $\mathcal{LCAC_{S}}$-многообразии классов $CT_{i}$, $i = 1,2,3$. Кроме того, доказано, что любое $\mathcal{LCAC_{S}}$-многообразие класса $CT_{1}$ оказывается конгармоничным и $\Phi$-параконтактным.
-
Определена конформная связность со скалярной кривизной как обобщение псевдориманова пространства постоянной кривизны. Вычислена матрица кривизны такой связности. Доказано, что на многообразии конформной связности со скалярной кривизной имеется конформная связность с нулевой матрицей кривизны. Дано определение перенормируемого скаляра и доказано существование перенормируемых скаляров на любом многообразии конформной связности, где существует разбиение единицы. Доказано: 1) существование на многообразии конформной связности с нулевой матрицей кривизны конформной связности с положительной, отрицательной и знакопеременной скалярной кривизной; 2) существование на многообразии конформной связности глобальной калибровочно-инвариантной метрики; 3) на гиперповерхности конформного пространства индуцированная конформная связность не может быть с ненулевой скалярной кривизной.
-
Исследуется система $N$ ротаторов с наложенной связью, заданной условием обращения в ноль суммы косинусов углов поворота. Сформулированы уравнения динамики и приведены результаты численного моделирования для случаев $N=3$, $4$ и $5$, которые отвечают геодезическим потокам на двумерном, трехмерном и четырехмерном многообразии в компактной области (в силу периодичности конфигурационного пространства по угловым переменным). Система из трех ротаторов демонстрирует хаос, характеризуемый наличием одного положительного показателя Ляпунова, а для систем из четырех и пяти элементов имеется, соответственно, два и три положительных показателя (гиперхаос). Реализован алгоритм, позволяющий вычислять секционную кривизну многообразия в ходе численного моделирования динамики в точках траектории. В случае $N=3$ кривизна двумерного многообразия отрицательна (за исключением конечного числа точек, где она нулевая), и реализуется геодезический поток Аносова. Для $N=4$ и $5$ расчеты показывают, что условие отрицательной секционной кривизны не выполнено. Также изложена методика и представлены результаты проверки гиперболичности на основе численного анализа углов между подпространствами векторов малых возмущений, причем в случае $N=3$ гиперболичность подтверждается, а для $N=4$ и $5$ нет.
-
Рассмотрен класс задач управления по быстродействию в трехмерном пространстве с шаровой вектограммой скоростей. В качестве целевого множества выбрана гладкая регулярная кривая $\Gamma.$ Выделены псевдовершины — характеристические точки на $\Gamma,$ отвечающие за возникновение сингулярности у функции оптимального результата. Выявлены характерные особенности структуры сингулярного множества, относящегося к семейству биссектрис. Найдено аналитическое представление для крайних точек биссектрисы, соответствующих фиксированной псевдовершине. В качестве иллюстрации эффективности развиваемых методов решения негладких динамических задач приведен пример численно-аналитического построения разрешающих конструкций задачи управления по быстродействию.
-
В работе рассматривается вывод законов кинематического управления движением трехколесного и четырехколесного экипажей с жесткими колесами вдоль произвольной гладкой траектории. Параметрами управления для трехколесного экипажа выбраны независимые углы вращения ведущих колес. Параметром управления четырехколесного экипажа выбран угол поворота переднего колеса в двухколесной модели автомобиля, определяемый углами поворота передних колес по принципу рулевого управления Аккермана. Установлено, что произведение скорости любой точки корпуса автомобиля на ориентированную кривизну ее траектории является кинематическим инвариантом, определяющим угловую скорость автомобиля. Приведены результаты численного моделирования и анимации движения трехколесного и четырехколесного экипажей, демонстрирующие адекватность предлагаемой модели кинематического управления. Обсуждаются возможности применения установленных законов кинематического управления движением при уточнении алгоритмов параллельной парковки, при решении навигационных задач управления механическими транспортными средствами при помощи навигационных систем ГЛОНАСС и GPS, при решении задач управления мобильными роботами с помощью датчиков слежения, а также при проектировании автодорог, транспортных развязок, паркингов, автозаправок, дорожных пунктов питания и при создании тренажеров.
-
Проективно-двойственные переменные использованы для описания геометрии движения точечной массы в движущейся системе наблюдения, связанной с воздушной средой, характеризующейся квадратичным по скорости законом для лобового сопротивления. Через обратный переход к неподвижной системе и обратное преобразование Лагранжа выведены степенные формулы для абсолютных координат и времени: $x(b)$, $y(b)$, $z(b)$ и $t(b)$, $b = \rm{tg}\, \Theta$ — наклон относительной траектории, в области малых углов вылета $\Theta_0 < 15^{\circ}$. Выражения используют ключевые параметры движения: $b_0 = \rm{tg}\, \Theta_0$, $\Theta_0$ — угол вылета, $R_a$ — вершинный радиус кривизны траектории и $\beta_0$ — отношение квадрата разворотной скорости к квадрату предельной скорости. Малое отклонение полученных аппроксимаций от классических интегральных выражений обусловлено эффектом автоподстройки, заключающемся в уменьшении параметра $\beta_0$ с ростом начального наклона траектории $b_0$. Для стартовых сил сопротивления, не превышавших $1.15$ $\rm{m\,g}$, и скоростей ветра, меньших 40 м/с, и в вышеуказанном интервале углов вылета абсолютные погрешности составляли величины порядка дециметров, а относительные не превышали десятых долей процента. Ввиду того, что численная реализация формул «почти» алгебраическая, они могут быть внедрены в простейшие баллистические калькуляторы как используемые для стрельбы в условиях ветра, так и с движущегося орудия/по движущейся мишени.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.