Текущий выпуск Выпуск 3, 2025 Том 35
Результыты поиска по 'кривизна':
Найдено статей: 8
  1. В работе описывается классификация локально конформного почти косимплектического многообразия ($\mathcal{LCAC_{S}}$-многообразия) в соответствии с тензором конгармонической кривизны. В частности, были получены необходимые условия $\Phi$ инвариантности тензора конгармонической кривизны на $\mathcal{LCAC_{S}}$-многообразии классов $CT_{i}$, $i = 1,2,3$. Кроме того, доказано, что любое $\mathcal{LCAC_{S}}$-многообразие класса $CT_{1}$ оказывается конгармоничным и $\Phi$-параконтактным.

  2. Кривоносов Л.Н., Лукьянов В.А.
    Конформная связность со скалярной кривизной, с. 22-35

    Определена конформная связность со скалярной кривизной как обобщение псевдориманова пространства постоянной кривизны. Вычислена матрица кривизны такой связности. Доказано, что на многообразии конформной связности со скалярной кривизной имеется конформная связность с нулевой матрицей кривизны. Дано определение перенормируемого скаляра и доказано существование перенормируемых скаляров на любом многообразии конформной связности, где существует разбиение единицы. Доказано: 1) существование на многообразии конформной связности с нулевой матрицей кривизны конформной связности с положительной, отрицательной и знакопеременной скалярной кривизной; 2) существование на многообразии конформной связности глобальной калибровочно-инвариантной метрики; 3) на гиперповерхности конформного пространства индуцированная конформная связность не может быть с ненулевой скалярной кривизной.

  3. В работе рассматриваются два конциркулярных инварианта приближенно келерова многообразия. Доказано, что приближенно келерово многообразие конциркулярно-плоско тогда и только тогда, когда первый конциркулярный инвариант равен нулю. Получена формула для вычисления второго конциркулярного инварианта и выделен подкласс приближенно келеровых многообразий, названный классом конциркулярно-паракелеровых многообразий. Конциркулярно-паракелерово многообразие нулевой скалярной кривизны изометрично комплексному евклидову пространству $\mathbb {C}^n$, снабженному стандартной эрмитовой метрикой. Класс конциркулярно-паракелеровых многообразий ненулевого постоянного типа совпадает с классом шестимерных собственных приближенно келеровых многообразий. Доказано, что конциркулярно-паракелерово приближенно келерово многообразие является римановым многообразием постоянной неотрицательной скалярной кривизны. При этом его скалярная кривизна равна нулю тогда и только тогда, когда оно является келеровым многообразием. Получена полная локальная характеризация конциркулярно-паракелеровых приближенно келеровых многообразий и конциркулярно-рекуррентных приближенно келеровых многообразий.

  4. Представлены результаты численных исследований собственных колебаний усеченных прямых конических оболочек вращения, полностью заполненных идеальной сжимаемой жидкостью. Толщина оболочек непостоянна вдоль образующей и изменяется по различным законам. Поведение упругой конструкции и жидкой среды описывается в рамках классической теории оболочек, основанной на гипотезах Кирхгофа–Лява, и уравнений Эйлера. Уравнения движения оболочки совместно с соответствующими геометрическими и физическими соотношениями сводятся к системе обыкновенных дифференциальных уравнений относительно новых неизвестных. Акустическое волновое уравнение, записанное относительно гидродинамического давления, преобразуется к системе дифференциальных уравнений с помощью метода обобщенных дифференциальных квадратур. Решение сформулированной краевой задачи осуществляется методом ортогональной прогонки Годунова и сводится к вычислению собственных частот колебаний. Для этой цели используется сочетание пошаговой процедуры с последующим уточнением найденных значений в полученном диапазоне методом Мюллера. Достоверность получаемых результатов подтверждена сравнением с известными численными решениями. Для оболочек с различными углами конусности и комбинациями граничных условий (свободное опирание, жесткое и консольное закрепления) исследованы зависимости низших частот колебаний, полученных при степенном (линейном и квадратичном, имеющих симметричную и несимметричную формы) и гармоническом (с положительной и отрицательной кривизной) изменении толщины. Оценено влияние граничных условий на возможность существования конфигураций (угол конусности, закон изменения толщины, отношение максимальной и минимальной толщины профиля), обеспечивавших повышение фундаментальной частоты по сравнению с оболочками постоянной толщины при ограничениях на вес конструкции.

  5. Исследуется система $N$ ротаторов с наложенной связью, заданной условием обращения в ноль суммы косинусов углов поворота. Сформулированы уравнения динамики и приведены результаты численного моделирования для случаев $N=3$, $4$ и $5$, которые отвечают геодезическим потокам на двумерном, трехмерном и четырехмерном многообразии в компактной области (в силу периодичности конфигурационного пространства по угловым переменным). Система из трех ротаторов демонстрирует хаос, характеризуемый наличием одного положительного показателя Ляпунова, а для систем из четырех и пяти элементов имеется, соответственно, два и три положительных показателя (гиперхаос). Реализован алгоритм, позволяющий вычислять секционную кривизну многообразия в ходе численного моделирования динамики в точках траектории. В случае $N=3$ кривизна двумерного многообразия отрицательна (за исключением конечного числа точек, где она нулевая), и реализуется геодезический поток Аносова. Для $N=4$ и $5$ расчеты показывают, что условие отрицательной секционной кривизны не выполнено. Также изложена методика и представлены результаты проверки гиперболичности на основе численного анализа углов между подпространствами векторов малых возмущений, причем в случае $N=3$ гиперболичность подтверждается, а для $N=4$ и $5$ нет.

  6. Рассмотрен класс задач управления по быстродействию в трехмерном пространстве с шаровой вектограммой скоростей. В качестве целевого множества выбрана гладкая регулярная кривая $\Gamma.$ Выделены псевдовершины — характеристические точки на $\Gamma,$ отвечающие за возникновение сингулярности у функции оптимального результата. Выявлены характерные особенности структуры сингулярного множества, относящегося к семейству биссектрис. Найдено аналитическое представление для крайних точек биссектрисы, соответствующих фиксированной псевдовершине. В качестве иллюстрации эффективности развиваемых методов решения негладких динамических задач приведен пример численно-аналитического построения разрешающих конструкций задачи управления по быстродействию.

  7. Берестова С.А., Мисюра Н.Е., Митюшов Е.А.
    Кинематическое управление движением колесных транспортных средств, с. 254-266

    В работе рассматривается вывод законов кинематического управления движением трехколесного и четырехколесного экипажей с жесткими колесами вдоль произвольной гладкой траектории. Параметрами управления для трехколесного экипажа выбраны независимые углы вращения ведущих колес. Параметром управления четырехколесного экипажа выбран угол поворота переднего колеса в двухколесной модели автомобиля, определяемый углами поворота передних колес по принципу рулевого управления Аккермана. Установлено, что произведение скорости любой точки корпуса автомобиля на ориентированную кривизну ее траектории является кинематическим инвариантом, определяющим угловую скорость автомобиля. Приведены результаты численного моделирования и анимации движения трехколесного и четырехколесного экипажей, демонстрирующие адекватность предлагаемой модели кинематического управления. Обсуждаются возможности применения установленных законов кинематического управления движением при уточнении алгоритмов параллельной парковки, при решении навигационных задач управления механическими транспортными средствами при помощи навигационных систем ГЛОНАСС и GPS, при решении задач управления мобильными роботами с помощью датчиков слежения, а также при проектировании автодорог, транспортных развязок, паркингов, автозаправок, дорожных пунктов питания и при создании тренажеров.

  8. Проективно-двойственные переменные использованы для описания геометрии движения точечной массы в движущейся системе наблюдения, связанной с воздушной средой, характеризующейся квадратичным по скорости законом для лобового сопротивления. Через обратный переход к неподвижной системе и обратное преобразование Лагранжа выведены степенные формулы для абсолютных координат и времени: $x(b)$, $y(b)$, $z(b)$ и $t(b)$, $b = \rm{tg}\, \Theta$ — наклон относительной траектории, в области малых углов вылета $\Theta_0 < 15^{\circ}$. Выражения используют ключевые параметры движения: $b_0 = \rm{tg}\, \Theta_0$, $\Theta_0$ — угол вылета, $R_a$ — вершинный радиус кривизны траектории и $\beta_0$ — отношение квадрата разворотной скорости к квадрату предельной скорости. Малое отклонение полученных аппроксимаций от классических интегральных выражений обусловлено эффектом автоподстройки, заключающемся в уменьшении параметра $\beta_0$ с ростом начального наклона траектории $b_0$. Для стартовых сил сопротивления, не превышавших $1.15$ $\rm{m\,g}$, и скоростей ветра, меньших 40 м/с, и в вышеуказанном интервале углов вылета абсолютные погрешности составляли величины порядка дециметров, а относительные не превышали десятых долей процента. Ввиду того, что численная реализация формул «почти» алгебраическая, они могут быть внедрены в простейшие баллистические калькуляторы как используемые для стрельбы в условиях ветра, так и с движущегося орудия/по движущейся мишени.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref