Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматривается плоское движение твердого тела в однородном поле тяжести. Тело подвешено на невесомой нерастяжимой нити. Предполагается, что во все время движения тела нить остается натянутой. Изучены нелинейные периодические колебания тела в окрестности его устойчивого положения равновесия на вертикали. Эти движения рождаются из малых (линейных) нормальных колебаний тела. Вопрос о существовании таких движений решается при помощи теоремы Ляпунова о голоморфном интеграле. Указан алгоритм построения этих движений при помощи метода канонических преобразований. Соответствующие решения представимы в виде рядов по малому параметру, характеризующему амплитуду порождающих нормальных колебаний. Дано строгое решение нелинейной задачи об орбитальной устойчивости построенных движений. Указаны возможные области параметрического резонанса (области неустойчивости), рассмотрены случаи резонансов третьего и четвертого порядков, а также нерезонансный случай. Исследование опирается на методы Ляпунова и Пуанкаре и КАМ-теорию.
The planar motion of a rigid body in a uniform gravity field is considered. The body is suspended on a weightless inextensible thread. The thread is assumed to remain taut during the motion of the body. Nonlinear periodic oscillations of the body in the vicinity of its stable equilibrium position on the vertical are studied. These motions are generated by small (linear) normal body vibrations. The question of the existence of such motions is solved with the Lyapunov theorem on a holomorphic integral. An algorithm for constructing these motions using the canonical transformation method is proposed. The corresponding solutions are represented in the form of series in a small parameter characterizing the amplitude of the generating normal oscillations. A rigorous solution is given to the nonlinear problem of orbital stability of the motions obtained. Possible regions of parametric resonance (instability regions) are indicated. The third and fourth order resonance cases, as well as a nonresonant case, are considered. The study is based on the Lyapunov and Poincaré methods and KAM-theory.
-
О движении динамически симметричного спутника в одном случае кратного параметрического резонанса, с. 594-612Исследуются движения динамически симметричного спутника (твердого тела) относительно центра масс в центральном ньютоновском гравитационном поле на слабоэллиптической орбите в окрестности его стационарного вращения (цилиндрической прецессии). Рассматриваются значения параметров, для которых в предельном случае круговой орбиты одна из частот малых линейных колебаний равна единице, а другая нулю, и ранг матрицы коэффициентов линеаризованных уравнений возмущенного движения равен двум, а также малая окрестность этой резонансной точки в трехмерном пространстве параметров. Построены резонансные периодические движения спутника, аналитические по дробным степеням малого параметра (эксцентриситета орбиты центра масс спутника), проведен строгий нелинейный анализ их устойчивости. Методами КАМ-теории описаны двух- и трехчастотные условно-периодические движения спутника, с частотами разного порядка по малому параметру. Обсуждается ряд общетеоретических вопросов, касающихся рассматриваемого кратного параметрического резонанса в близких к автономным, периодических по времени гамильтоновых системах с двумя степенями свободы. Построено несколько качественно различных вариантов областей параметрического резонанса. Показано, что в общем случае характер нелинейных резонансных колебаний системы определяется системой первого приближения по малому параметру.
кратный параметрический резонанс, нормализация, нелинейные колебания, устойчивость, периодические движения, теория КАМ, спутник, цилиндрическая прецессия
On the motion of a dynamically symmetric satellite in one case of multiple parametric resonance, pp. 594-612The paper studies the motions of a dynamically symmetric satellite (rigid body) relative to the center of mass in the central Newtonian gravitational field on a weakly elliptical orbit in the neighborhood of its stationary rotation (cylindrical precession). We consider the values of the parameters for which, in the limiting case of a circular orbit, one of the frequencies of small linear oscillations is equal to unity and the other is equal to zero, and the rank of the coefficient matrix of the linearized equations of the perturbed motion is equal to two, as well as a small neighborhood of this resonant point in the three-dimensional space of parameters. The resonant periodic motions of the satellite, analytical in fractional powers of a small parameter (the eccentricity of the orbit of the satellite's center of mass), are constructed. A rigorous nonlinear analysis of their stability is carried out. The methods of KAM theory are used to describe two- and three-frequency conditionally periodic motions of a satellite, with frequencies of different orders in a small parameter. A number of general theoretical issues concerning the considered multiple parametric resonance in Hamiltonian systems with two degrees of freedom that are close to autonomous and periodic in time are discussed. Several qualitatively different variants of parametric resonance regions are constructed. It is shown that in the general case the nature of nonlinear resonant oscillations of the system is determined by the first approximation system in a small parameter.
-
Рассматривается движение математического маятника, установленного на подвижной платформе. Платформа вращается вокруг заданной вертикали с постоянной угловой скоростью $\omega$ и одновременно совершает гармонические колебания с амплитудой $A$ и частотой $\Omega$ вдоль вертикали. Амплитуда колебаний предполагается малой по сравнению с длиной маятника $\ell$ $(A=\varepsilon \ell,\ 0<\varepsilon \ll 1) $. Рассмотрено три типа движений. Для первых двух типов маятник неподвижен относительно платформы и располагается вдоль ее оси вращения (висящий и перевернутый маятники). Для третьего типа движений маятник совершает периодические колебания с периодом, равным периоду вертикальных колебаний платформы. Эти колебания имеют амплитуду порядка $\varepsilon$ и при $\varepsilon = 0$ переходят в положение относительного равновесия, в котором маятник составляет постоянный угол с вертикалью. Третий тип движения существует, если угловая скорость вращения платформы достаточно большая ($\omega^2 \ell>g$, где $g$ - ускорение свободного падения). В статье решается задача об устойчивости этих трех типов движения маятника для малых значений $\varepsilon$. Рассмотрены как нерезонансные случаи, так и случаи, когда в системе реализуются резонансы второго, третьего и четвертого порядка. В пространстве трех безразмерных параметров задачи $g/(\omega^2 \ell)$, $\Omega / \omega$ и $\varepsilon$ выделены области устойчивости по Ляпунову и области неустойчивости. Исследование опирается на классические методы и алгоритмы Ляпунова, Пуанкаре и Биркгофа, а также на современные методы анализа динамических систем при помощи КАМ-теории.
The motion of a mathematical pendulum mounted on a movable platform is considered. The platform rotates around a given vertical with a constant angular velocity $\omega$ and simultaneously executes harmonic oscillations with amplitude $A$ and frequency $\Omega$ along the vertical. The amplitude of oscillations is assumed to be small in comparison with the length $\ell$ of the pendulum $(A=\varepsilon \ell,\ 0<\varepsilon \ll 1) $. Three types of motions are considered. For the first two types, the pendulum is stationary relative to the platform and is located along its axis of rotation (hanging and inverted pendulum). For the third type of motions, the pendulum performs periodic oscillations with a period equal to the period of vertical oscillations of the platform. These oscillations have an amplitude of order $\varepsilon$ and at $\varepsilon = 0$ become relative equilibrium positions, in which the pendulum is a constant angle from the vertical. The motion of the third type exists if the angular velocity of rotation of the platform is large enough ($\omega^2 \ell>g$, $g$ is acceleration of gravity). In this paper, the problem of stability of these three types of pendulum motions for small values of $\varepsilon$ is solved. Both nonresonant cases and cases where resonances of the second, third and fourth orders occur in the system are considered. In the space of three dimensionless parameters of the problem, Lyapunov's stability and instability regions are singled out. The study is based on classical methods and algorithms due to Lyapunov, Poincaré and Birkhoff, as well as on modern methods of dynamical system analysis using Kolmogorov-Arnold-Moser (KAM) theory.
-
В работе исследуются движения системы, состоящей из двух шарнирно соединенных тонких однородных стержней, вращающихся вокруг горизонтальных осей. Предполагается, что точка подвеса системы, совпадающая с концом одного из стержней, совершает горизонтальные высокочастотные гармонические колебания малой амплитуды.
Проведено исследование устойчивости четырех положений относительного равновесия на вертикали. Показано, что устойчивым может быть только нижнее ("висящее") положение относительного равновесия. Для системы, состоящей из двух одинаковых стержней, вопрос об устойчивости этого равновесия решен в нелинейной постановке. Также для этой же системы изучен вопрос о существовании, бифуркациях и устойчивости высокочастотных периодических движений малой амплитуды, отличных от положений относительного равновесия на вертикали.
We consider the motion of a system consisting of two hinged thin uniform rods rotating about horizontal axes. It is assumed that the point of suspension of the system coinciding with the point of suspension of one of the rods makes horizontal high-frequency harmonic oscillations of a small amplitude.
Investigation of stability of four relative equilibria in the vertical is carried out. It is proved that only the lower ("hanging") relative equilibrium can be stable if the oscillation frequency of the point of suspension doesn’t exceed the fixed value. For a system consisting of two identical rods the nonlinear problem of stability of this equilibrium is solved. The problem of existence, bifurcations and stability of high-frequency periodic motions of a small amplitude which differ from the relative equilibria in the vertical is also studied for the system.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.