Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В статье рассмотрена редукция уравнений Кирхгофа-Пуассона задачи о движении твердого тела под действием потенциальных и гироскопических сил и уравнений задачи о движении твердого тела в магнитном поле с учетом эффекта Барнетта-Лондона. Получены аналоги уравнений Н. Ковалевского в указанных задачах. Построены два новых частных решения полиномиального класса Стеклова-Ковалевского-Горячева редуцированных дифференциальных уравнений рассматриваемых задач. Полиномиальное решение задачи о движении гиростата под действием потенциальных и гироскопических сил характеризуется свойством: квадраты второй и третьей компонент вектора угловой скорости представлены квадратными многочленами от первой компоненты этого вектора, которая является эллиптической функцией времени. Полиномиальное решение уравнений движения твердого тела в магнитном поле с учетом эффекта Барнетта-Лондона характеризуется тем, что квадрат второй компоненты вектора угловой скорости - многочлен второго порядка, а квадрат третьей компоненты - многочлен четвертого порядка от первой компоненты этого вектора, которая находится в результате обращения гиперэллиптического интеграла.
уравнения Кирхгофа-Пуассона, уравнения Эйлера-Пуассона, уравнения Н. Ковалевского, полиномиальные решения, эффект Барнетта-ЛондонаIn this paper we consider the reduction of Kirchhoff-Poisson equations related to the problem of rigid body motion under the action of potential and gyroscopic forces and also equations of the problem of rigid body motion taking into account the Barnett-London effect. For the above-mentioned problems, we obtain analogues of N. Kovalevski equations. In addition, for the above-mentioned problems we obtain two new particular solutions to the polynomial class of Steklov-Kovalevski-Goryachev reduced differential equations. The polynomial solution of the problem of gyrostat motion under the action of potential and gyroscopic forces is characterized by the following property: the squares of the second and the third vector component of angular velocity are quadratic polynomials of the first vector component that is an elliptic function of time. A polynomial solution of the equation of rigid body motion in a magnetic field (taking into account the Barnett-London effect) is characterized by the fact that the square of the second vector component of the angular velocity is the second-degree polynomial, while the square of the third component is the fourth-degree polynomial of the first vector component. The former is found as a result of an elliptic integral inversion.
-
В работе рассматривается безвинтовой робот, перемещающийся по поверхности жидкости за счет вращения внутреннего ротора. Корпус робота в сечении имеет форму симметричного крылового профиля NACA 0040. Записаны уравнения движения в виде классических уравнений Кирхгофа, дополненных слагаемыми, описывающими вязкое сопротивление. На основе анализа полученной модели предложен закон управления. Проведены исследования влияния различных параметров модели на траекторию движения робота.
Simulation of the motion of a propellerless mobile robot controlled by rotation of the internal rotor, pp. 645-656We consider a propellerless robot that moves on the surface of a fluid by rotating of the internal rotor. The robot shell has a symmetric shape of NACA 0040 airfoil. The equations of motion are written in the form of classical Kirchhoff equations with terms describing the viscous friction. The control action based on the derived model is proposed. The influences of various model parameters on the robot's trajectory have been studied.
-
В статье исследованы условия существования двух новых классов полиномиальных решений дифференциальных уравнений задачи о движении гиростата с неподвижной точкой в магнитном поле с учетом эффекта Барнетта–Лондона. Общая особенность структуры этих классов заключается в том, что функции, задающие инвариантные соотношения для компонент единичного вектора оси симметрии действующих силовых полей, являются либо рациональными функциями от первой компоненты указанного вектора, либо от вспомогательной переменной. Построены три новых частных решения рассматриваемых полиномиальных классов. Эти решения описываются функциями, полученными обращением гиперэллиптических интегралов. Доказано, что еще одно построенное решение исследуемых полиномиальных структур, для которого движение гиростата обладает свойством прецессионности, является частным случаем известного решения.
уравнения Кирхгофа–Пуассона, эффект Барнетта–Лондона, гиростат, полиномиальное решение, инвариантное соотношениеThe paper studies the existence of two new classes of polynomial solutions to differential equations related to the problem of the gyrostat motion with a fixed point in the magnetic field, taking into account the Barnett–London effect. A common feature of the structure of these classes is that the functions that set the invariance relations for the unit vector components of the symmetry axis of the active force fields are either rational functions of the first component of the specified vector or of the auxiliary variable. Three new particular solutions to the polynomial classes under consideration are constructed. These solutions are described by the functions obtained by the inversion of hyperelliptic integrals. It has been proved that another constructed solution of the polynomial structures under study, for which the movement of the gyrostat has the property of precession, is a particular case of a known solution.
-
Модель безвинтового подводного робота, с. 544-553Данная статья посвящена созданию модели подводного робота, приводящегося в движение с помощью расположенных внутри него роторов. Подобная конструкция не имеет подвижных элементов, взаимодействующих с окружающей средой, что минимизирует негативное воздействие на нее и повышает бесшумность движения робота в жидкости. Несмотря на многочисленные дискуссии о возможности и эффективности движения за счет перемещения внутренних масс, большое количество работ, опубликованных в последнее время, подтверждает актуальность исследований. В статье представлен обзор работ, направленных на изучение движения на основе перемещения внутренних масс. Предложена конструкция безвинтового подводного робота, перемещающегося за счет вращения внутренних роторов, для проведения теоретических и экспериментальных исследований. При проведении теоретических исследований модель представляет собой полый эллипсоид с расположенными внутри тремя роторами, оси вращения которых взаимно ортогональны. Для предложенной модели безвинтового подводного робота получены уравнения движения в виде классических уравнений Кирхгофа.
A model of a screwless underwater robot, pp. 544-553The paper is devoted to the development of a model of an underwater robot actuated by inner rotors. This design has no moving elements interacting with an environment, which minimizes a negative impact on it, and increases noiselessness of the robot motion in a liquid. Despite numerous discussions on the possibility and efficiency of motion by means of internal masses' movement, a large number of works published in recent years confirms a relevance of the research. The paper presents an overview of works aimed at studying the motion by moving internal masses. A design of a screwless underwater robot that moves by the rotation of inner rotors to conduct theoretical and experimental investigations is proposed. In the context of theoretical research a robot model is considered as a hollow ellipsoid with three rotors located inside so that the axes of their rotation are mutually orthogonal. For the proposed model of a screwless underwater robot equations of motion in the form of classical Kirchhoff equations are obtained.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.