Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'T-systems':
Найдено статей: 387
  1. Для произвольной игровой задачи наведения на множество предложен метод преобразования к задаче наведения «в момент».

    The method of transformation of the guidance problem for the conict-controlled system into the problem of guidance "into the moment" is suggested. The transformation is realized by changing the dynamic function.

  2. Получены необходимые и достаточные условия выживаемости дифференциальной системы с последействием и дифференциального включения с последействием. Получены достаточные условия положительной инвариантности множества для системы (включения) с последействием.

    Necessary and sufficient conditions of viability of differential systems with aftereffect and differential inclusions with aftereffect are received. Sufficient conditions of positive invariance of set for systems (inclusions) with aftereffect are received.

  3. В параметрическом семействе подпространств пространства прерывистых функций вводится понятие присоединенного интеграла (в каждом подпространстве применяется собственный интеграл). В подпространстве, представляющем их пересечение, также определено понятие присоединенного интеграла. Это подпространство содержит в себе пространство функций ограниченной вариации. В каждом подпространстве на основе присоединенного интеграла определяется понятие обобщенной прерывистой функции и ее присоединенной обобщенной производной. Доказана разрешимость линейных импульсных систем, заданных в терминах присоединенных обобщенных функций.

    Rodionov V.I.
    On solvability of impulse systems, pp. 3-18

    In parametrical family of subspaces of space of regulated functions the concept of the adjoint integral (in everyone subspace own integral is applied) is defined. In subspace, representing their crossing, the concept of the adjoint integral also is defined. This subspace includes the space of functions of the bounded variation. In any subspace on the basis of the adjoint integral the concept of the generalized regulated function and its adjoint generalized derivative is defined. Solvability of linear impulse systems in terms of adjoint generalized functions is proved.

  4. Для дифференциальной игры многих лиц найдены условия того, что заданное многозначное отображение в каждой точке есть множество выигрышей в ситуациях равновесия по Нэшу. Данное условие выписано в инфинитезимальной форме. Также найдены достаточные условия, при которых набор непрерывных функций обеспечивает равновесие по Нэшу. Данное условие обобщает метод, основанный на системе уравнений типа Гамильтона–Якоби.

    We study Nash equilibrium for a differential game with many players. The condition on a multivalued map under which any value of this map is a set of Nash equilibrium payoffs is obtained. This condition is written in infinitesimal form. The sufficient condition for the given complex of continuous functions to provide a Nash equilibrium is obtained. This condition is a generalization of the method based on system of Hamilton–Jacobi equations.

  5. Рассматривается игровая задача на максимин функции платы, определенной на произведении множеств притяжения терминальных состояний систем первого и второго игрока. Данные множества притяжения найдены с помощью конструкций расширения в классе конечно-аддитивных мер.

    We consider a game problem of maximin of cost function defined on the product of attraction sets of players’ dynamic systems terminal positions. These sets are constructed using the extension in the class of finitely additive measures.

  6. Исследуется воздействие аддитивных и параметрических шумов на аттракторы одномерной системы, задаваемой стохастическим дифференциальным уравнением Ито. Показано, что в отличие от аддитивных, параметрические возмущения приводят к сдвигу экстремумов функции плотности распределения. Для величины такого сдвига получено разложение по малому параметру интенсивности шума. Показано, что воздействие параметрического шума может изменить не только расположение, но и количество экстремумов плотности распределения. Подробный анализ соответствующих индуцированных шумами явлений проведен для трех динамических моделей. Сравнение погрешности приближений разного порядка для оценки сдвига экстремумов функции плотности представлено на примере линейной модели. Два сценария перехода между унимодальной и бимодальной формами стохастического аттрактора исследованы для систем с разными типами кубической нелинейности.

    The influence of additive and parametrical noise on attractors of the one-dimensional system governed by the stochastic differential Ito equation is investigated. It is shown that unlike additive, parametrical disturbances lead to the shift of extrema of probability density function. For the value of this shift, a decomposition on small parameter of noise intensity is obtained. It is shown that the influence of the parametrical noise can change not only the arrangement, but also the quantity of extrema of probability density function. The corresponding noise-induced phenomena are studied for three dynamical models in detail. An analysis of the error for the different order estimations of the shift of extrema for the probability density function is presented by the example of a linear model. Two scenarios of the transition between unimodal and bimodal forms of the stochastic attractor are investigated for systems with different types of cubic nonlinearity.

  7. Аль Джабри Х.Ш., Родионов В.И.
    Граф частичных порядков, с. 3-12

    Любое бинарное отношение σX (где X - произвольное множество) порождает на множестве X2 характеристическую функцию: если (x,y)∈σ, то σ(x,y)=1, а иначе σ(x,y)=0. В терминах характеристических функций на множестве всех бинарных отношений множества X вводится понятие бинарного рефлексивного отношения смежности и определяется алгебраическая система, состоящая из всех бинарных отношений множества и из всех неупорядоченных пар различных смежных бинарных отношений. Если X - конечное множество, то эта алгебраическая система - граф («граф графов»).

    Показано, что если σ и τ - смежные отношения, то σ является частичным порядком тогда и только тогда, когда τ является частичным порядком. Исследованы некоторые особенности строения графа G(X) частичных порядков. В частности, если X состоит из n элементов, а T0(n) - это число помеченных T0-топологий, определенных на множестве X, то количество вершин в графе G(X) равно T0(n), а количество компонент связности равно T0(n-1).

    Для всякого отношения частичного порядка σ определяется понятие его опорного множества S(σ), являющегося некоторым подмножеством множества X. Если X - конечное множество, а частичные порядки σ и τ принадлежат одной и той же компоненте связности графа G(X), то равенство S(σ)=S(τ) имеет место тогда и только тогда, когда σ=τ. Показано, что в каждой компоненте связности графа G(X) совокупность опорных множеств ее элементов является специфическим частично упорядоченным множеством относительно естественного отношения включения множеств.

    Al' Dzhabri K.S., Rodionov V.I.
    The graph of partial orders, pp. 3-12

    Any binary relation σX (where X is an arbitrary set) generates a characteristic function on the set X2: if (x,y)∈σ, then σ(x,y)=1, otherwise σ(x,y)=0. In terms of characteristic functions on the set of all binary relations of the set X we introduced the concept of a binary reflexive relation of adjacency and determined the algebraic system consisting of all binary relations of a set and of all unordered pairs of various adjacent binary relations. If X is finite set then this algebraic system is a graph (“a graph of graphs”).

    It is shown that if σ and τ are adjacent relations then σ is a partial order if and only if τ is a partial order. We investigated some features of the structure of the graph G(X) of partial orders. In particular, if X consists of n elements, and T0(n) is the number of labeled T0-topologies defined on the set X, then the number of vertices in a graph G(X) is T0(n), and the number of connected components is T0(n-1).

    For any partial order σ there is defined the notion of its support set S(σ), which is some subset of X. If X is finite set, and partial orders σ and τ belong to the same connected component of the graph G(X), then the equality S(σ)=S(τ) holds if and only if σ=τ. It is shown that in each connected component of the graph G(X) the union of support sets of its elements is a specific partially ordered set with respect to natural inclusion relation of sets.

  8. Любое бинарное отношение $\sigma\subseteq X^2$ (где $X$ - произвольное множество) порождает на множестве $X^2$ характеристическую функцию: если $(x,y)\in\sigma,$ то $\sigma(x,y)=1,$ а иначе $\sigma(x,y)=0.$ В терминах характеристических функций на множестве всех бинарных отношений множества $X$ вводится понятие бинарного рефлексивного отношения смежности и определяется алгебраическая система, состоящая из всех бинарных отношений множества и из всех неупорядоченных пар различных смежных бинарных отношений. Если $X$ - конечное множество, то эта алгебраическая система - граф («граф графов»).
    Показано, что если $\sigma$ и $\tau$ - смежные отношения, то $\sigma$ является рефлексивно-транзитивным отношением тогда и только тогда, когда $\tau$ является рефлексивно-транзитивным отношением. Исследованы некоторые особенности строения графа $G(X)$ рефлексивно-транзитивных отношений. В частности, если $X$ состоит из $n$ элементов, а $T_0(n)$ - это число помеченных $T_0$-топологий, определенных на множестве $X,$ то количество компонент связности равно $\sum_{m=1}^n S(n,m) T_0(m-1),$ где $S(n,m)$ - числа Стирлинга 2-го рода. $($Хорошо известно, что количество вершин в графе $G(X)$ равно $\sum_{m=1}^nS(n,m) T_0(m).)$

    Any binary relation $\sigma\subseteq X^2$ (where $X$ is an arbitrary set) generates on the set $X^2$ a characteristic function: if $(x,y)\in\sigma,$ then $\sigma(x,y)=1,$ otherwise $\sigma(x,y)=0.$ In terms of characteristic functions we introduce on the set of all binary relations of the set $X$ the concept of a binary reflexive relation of adjacency and determine an algebraic system consisting of all binary relations of the set and of all unordered pairs of various adjacent binary relations. If $X$ is a finite set then this algebraic system is a graph (“the graph of graphs’’).
    It is shown that if $\sigma$ and $\tau$ are adjacent relations then $\sigma$ is a reflexive-transitive relation if and only if $\tau$ is a reflexive-transitive relation. Several structure features of the graph $G(X)$ of reflexive-transitive relations are investigated. In particular, if $X$ consists of $n$ elements, and $T_0(n)$ is the number of labeled $T_0$-topologies defined on the set $X,$ then the number of connected components is equal to $\sum_{m=1}^nS(n,m) T_0(m-1),$ where $S(n,m)$ are Stirling numbers of second kind. $($It is well known that the number of vertices in a graph $G(X)$ is equal to $\sum_{m=1}^nS(n,m) T_0(m).)$

  9. Аль Джабри Х.Ш., Родионов В.И.
    Граф ациклических орграфов, с. 441-452

    В терминах характеристических функций на множестве всех бинарных отношений множества $X$ вводится понятие бинарного рефлексивного отношения смежности и определяется алгебраическая система, состоящая из всех бинарных отношений множества и из всех неупорядоченных пар смежных бинарных отношений. Если $X$ — конечное множество, то эта алгебраическая система — граф («граф графов»). Доказано, что диаметр графа бинарных отношений равен 2. Показано, что если $\sigma$ и $\tau$ — смежные отношения, то $\sigma$ — ациклическое отношение (конечный ациклический орграф) тогда и только тогда, когда $\tau$ — ациклическое отношение. Получена явная формула для числа компонент связности графа ациклических отношений.

    Al' Dzhabri K.S., Rodionov V.I.
    The graph of acyclic digraphs, pp. 441-452

    The paper introduces the concept of a binary reflexive relation of adjacency on the set of all binary relations of a set $X$ (in terms of characteristic functions) and determines an algebraic system consisting of all binary relations of the set and of all unordered pairs of adjacent binary relations. If $X$ is a finite set then this algebraic system is a graph (“the graph of graphs”). It is proved that the diameter of a graph of binary relations is 2. It is shown that if $\sigma$ and $\tau$ are adjacent relations, then $\sigma$ is an acyclic relation (finite acyclic digraph) if and only if $\tau$ is an acyclic relation. An explicit formula for the number of connected components of a graph of acyclic relations is received

  10. Башкирцева И.А., Насырова В.М., Ряшко Л.Б., Цветков И.Н.
    Индуцированная шумом перемежаемость и переход к хаосу в нейронной модели Рулькова, с. 453-462

    В статье исследуется дискретная модель нейрона, предложенная Рульковым. В детерминированном варианте эта система моделирует различные режимы нейронной активности, такие как покой, тонический и хаотический спайкинг. В присутствии случайных возмущений в системе может наблюдаться еще один важный режим - берстинг, характеризующийся перемежаемостью участков покоя и возбуждения. В работе исследуются вероятностные механизмы индуцированных шумом переходов от покоя к берстингу в зоне касательной бифуркации. Показано, что такие переходы могут сопровождаться трансформацией динамики системы из регулярной в хаотическую. Для анализа этих бифуркационных явлений используются техника функций стохастической чувствительности и метод доверительных интервалов.

    Bashkirtseva I.A., Nasyrova V.M., Ryashko L.B., Tsvetkov I.N.
    Noise-induced intermittency and transition to chaos in the neuron Rulkov model, pp. 453-462

    A discrete neuron model proposed by Rulkov is studied. In the deterministic version, this system simulates different modes of neural activity, such as quiescence, tonic and chaotic spiking. In the presence of random disturbances, another important mode of bursting characterized by the alternation of quiescence and excitement regimes can be observed. We study the probabilistic mechanisms of noise-induced transitions from quiescence to bursting in the zone of the tangent bifurcation. It is shown that such transitions are accompanied by a transformation of the system dynamics from regular to chaotic. For the analysis of these bifurcation phenomena, the stochastic sensitivity functions technique and method of confidence intervals are used.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref