Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'максимин':
Найдено статей: 11
  1. Рассматривается игровая задача на максимин функции платы, определенной на произведении множеств притяжения терминальных состояний систем первого и второго игрока. Данные множества притяжения найдены с помощью конструкций расширения в классе конечно-аддитивных мер.

  2. Жуковский В.И., Солдатова Н.Г.
    К задаче диверсификации вклада по трем депозитам, с. 55-61

    Каким образом вкладчику распределить в банке свой вклад между рублевым и двумя валютными депозитами (в долларах и евро), чтобы через год получить наибольший доход? Причем вкладчику, естественно, неизвестен курс каждой из валют в конце года и ориентируется он лишь на коридор изменения такого курса. Ответ на этот вопрос кроется в распределении между депозитами лишь одного рубля. Решению последней задачи для рискофоба и посвящена предлагаемая статья.

  3. В теории игр и теории исследования операций часто появляется минимакс от функции $f(x,y)$, зависящей от двух векторных переменных $x$, $y$. Изучению свойств минимакса (или максимина) посвящено много работ. Минимакс можно трактовать как наименьший гарантированный результат для минимизирующего игрока (минимизирующей оперирующей стороны). При изучении минимаксных задач определенный интерес представляют различные вопросы о корректности. Одному из таких вопросов посвящена настоящая статья. В ней векторы $x$, $y$ принадлежат компактам $P$, $Q$ из соответствующих евклидовых пространств $R^k$, $R^l$, а функция $f(x,y)$ непрерывна на произведении пространств $R^k\times R^l$. В статье рассматривается вопрос о зависимости минимакса от малых изменений компактов $P$, $Q$ в метрике Хаусдорфа. Обосновывается непрерывность зависимости минимакса от малых вариаций множеств $P$, $Q$.

  4. Рассматривается задача оптимизации гарантированного результата для управляемой системы, описываемой обыкновенным дифференциальным уравнением, и функционала качества, непрерывно зависящего от траектории системы. Значения управления и помехи ограничены в каждый момент компактными множествами. Предполагается также, что помеха стеснена некоторым неизвестным функциональным ограничением из заданного семейства ограничений.

    Показано, что в данной задаче оптимальный гарантированный результат совпадает со значением нижней (максиминной) игры. Для получения эффективно реализуемых алгоритмов управления указываются дополнительные условия на правую часть рассматриваемой управляемой системы и подходящие способы построения оптимальной стратегии.

  5. Рассматривается игровая задача на максимин в условиях последовательного ослабления моментных ограничений. Конструируется расширение в классе конечно-аддитивных мер, реализующее асимптотику значений максимина при нарастающей точности соблюдения ограничений. Установлены эффективно проверяемые достаточные условия устойчивости «по максимину» (при ослаблении моментных ограничений).

  6. Рассматривается линейная игровая задача управления на максимин с ограничениями асимптотического характера (ОАХ), которые естественно возникают в связи с реализацией «узких» управляющих импульсов. В содержательном отношении это соответствует импульсным режимам управления с полным расходованием топлива. Возникающая игровая задача отвечает использованию асимптотических режимов управления обоими игроками, что отражено в концепции расширения, реализуемой в классе конечно-аддитивных мер. Исходная содержательная задача управления для каждого из игроков рассматривается как вариант абстрактной постановки, связанной с достижимостью при ОАХ, для которой построена соответствующая обобщенная задача о достижимости и установлено представление множества притяжения (МП), играющее роль асимптотического аналога области достижимости в классической теории управления. Данная конкретизация реализуется для каждого из игроков, на основе чего получается обобщенный максимин, для которого затем указан вариант асимптотической реализации в классе обычных управлений. Получено «конечномерное» описание МП, позволяющее находить упомянутый максимин с применением численных методов. Рассмотрено решение модельного примера задачи об игровом взаимодействии двух материальных точек, включающее этап компьютерного моделирования.

  7. Исследуются нелинейная дифференциальная игра (ДИ) сближения-уклонения, а также релаксации игровой задачи сближения (имеется в виду ослабление условий окончания игры сближения). Рассматривается вариант метода программных итераций, реализуемый в пространстве функций и доставляющий в пределе функцию цены ДИ на минимакс-максимин для специальных функционалов траектории. Данная предельная функция реализует для каждой позиции игры наименьший размер окрестности целевого множества, для которого при пропорциональном ослаблении фазовых ограничений игрок, заинтересованный в сближении, еще гарантирует его осуществление. Исследуются свойства вышеупомянутых функционалов и предельной функции. В частности, получены достаточные условия реализации значений данной функции при выполнении конечного числа итераций.

  8. В работе строится расширение конфликтно-управляемых задач на бесконечном промежутке. Соответствующее расширение является проективным пределом сужений исходной игры на ограниченные промежутки времени. Существование максимина в такой расширенной игре эквивалентно нечувствительности исходной игры к расширению целевого множества. Особое внимание в работе уделяется игре сближения-уклонения в паре "смешанное управление / обобщенное управление".

  9. Рассматривается абстрактная игровая задача управления и ее релаксации, связанные с ослаблением ограничений на выбор программных стратегий. В последнем случае реализуется серия задач на максимин, для которых множества допустимых стратегий каждого из участников образуют направленную систему. Устанавливается, что значения реализуемого (при каждом конкретном варианте ослабления условий) максимина обладают свойством сходимости и указывается представление обобщенного предела упомянутых значений.

  10. Рассматривается задача об оптимальном управлении по быстродействию. Обсуждаются достаточные условия локальной оптимальности, связанные с необходимыми условиями принципа максимума Понтрягина при условии полной управляемости системы в вариациях. Задача обсуждается для системы, описываемой векторным дифференциальным уравнением, обыкновенным или с последействием. В случае конфликтного управления обсуждается задача оптимального управления по критерию минимакса-максимина времени выхода системы в заданное состояние. Рассматривается модельный пример и обсуждается соответствующий вычислительный эксперимент.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref