К вопросу о разрешимости импульсных систем

 pdf (212K)

В параметрическом семействе подпространств пространства прерывистых функций вводится понятие присоединенного интеграла (в каждом подпространстве применяется собственный интеграл). В подпространстве, представляющем их пересечение, также определено понятие присоединенного интеграла. Это подпространство содержит в себе пространство функций ограниченной вариации. В каждом подпространстве на основе присоединенного интеграла определяется понятие обобщенной прерывистой функции и ее присоединенной обобщенной производной. Доказана разрешимость линейных импульсных систем, заданных в терминах присоединенных обобщенных функций.

Ключевые слова: прерывистая функция, обобщенная функция, импульсное уравнение
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2010, вып. 2, с. 3-18
DOI: 10.20537/vm100201

On solvability of impulse systems

In parametrical family of subspaces of space of regulated functions the concept of the adjoint integral (in everyone subspace own integral is applied) is defined. In subspace, representing their crossing, the concept of the adjoint integral also is defined. This subspace includes the space of functions of the bounded variation. In any subspace on the basis of the adjoint integral the concept of the generalized regulated function and its adjoint generalized derivative is defined. Solvability of linear impulse systems in terms of adjoint generalized functions is proved.

Keywords: regulated function, distribution, impulse equation
Citation in English: Bulletin of Udmurt University. Mathematics, Mechanics, Computer Science, 2010, issue 2, pp. 3-18

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref