Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'aircraft':
Найдено статей: 3
  1. В настоящей работе сформулирована, поставлена и решена обратная граничная задача теплопроводности, при условии, что коэффициент теплопроводности является кусочно-постоянным. Эта задача занимает важное место в технике, так как теплонагруженные узлы технических конструкций покрывают теплоизолирующим слоем, термические характеристики которого сильно отличаются от термических характеристик самой конструкции. Подобные задачи находят свое применение при планировании стендовых испытаний летательных аппаратов. Современные композитные материалы решают эту проблему, предоставляя разработчикам целый ряд преимуществ. В ракетных двигателях внутреннюю стенку камеры внутреннего сгорания покрывают теплозащитным слоем, который изготавливают из композитных материалов. Благодаря свойствам этих материалов теплозащитный слой значительно снижает температуру стенки внутреннего сгорания. При решении обратной граничной задачи необходимо учитывать разницу коэффициентов теплопроводности составных частей композитных материалов, из которых изготавливают стенку камеры. Задача исследовалась с помощью ряда Фурье по собственным функциям для уравнения с разрывным коэффициентом. Доказано, что для решения обратной задачи применимо преобразование Фурье по переменной времени. Для решения обратной задачи использовано преобразование Фурье, позволяющее свести обратную задачу к операторному уравнению, которое было решено методом невязки.

    In the present paper, an inverse boundary value problem of thermal conduction is formulated, posed and solved, provided that the thermal diffusivity is piecewise constant. This task holds a prominent place in technology, since thermally loaded units of technical constructions are covered with a heat insulating layer, the thermal characteristics of which are very different from the thermal characteristics of the structure itself. Such tasks are used in the planning of bench tests of aircraft. Modern composite materials solve this problem, giving developers a number of advantages. In rocket engines, the inner wall of the internal combustion chamber is covered with a heat-shielding layer, which is made of composite materials. Due to the properties of these materials, the heat-shielding layer significantly reduces the temperature of the internal combustion wall. When solving an inverse boundary problem, it is necessary to take into account the difference in the thermal conductivity coefficients of the component parts of composite materials, which make the wall of the chamber. The problem was investigated using a Fourier series in eigenfunctions for an equation with a discontinuous coefficient. It is proved that for the solution of the inverse problem the Fourier transform with respect to $t$ is applicable. To solve the inverse problem, the Fourier transform was used, which made it possible to reduce the inverse problem to the operator equation, which was solved by the discrepancy method.

  2. В настоящее время в рамках управления воздушным движением крайне важной является задача формирования оптимального безопасного расписания прибытия самолетов в точку слияния воздушных трасс. Безопасность результирующей очереди обеспечивается наличием безопасного временнóго интервала между соседними прибытиями в точку слияния. Изменение момента прибытия может обеспечиваться изменением скорости движения самолета и/или использованием схем, удлиняющих или укорачивающих его траекторию. Оптимальность результирующей очереди рассматривается с точки зрения дополнительных требований: минимизации отклонения назначенных моментов прибытия от номинальных, минимизации количества изменений порядка самолетов в очереди, минимизации расхода топлива и т.д. Минимизируемый критерий оптимальности, отражающий эти требования, часто выбирается как сумма индивидуальных штрафов каждому судну за отклонение назначенного момента прибытия от номинального. Функция индивидуального штрафа почти во всех статьях рассматривается либо как модуль отклонения, либо как функция, похожая на модуль, но с различными наклонами ветвей, что приводит к разному штрафу за задержку и ускорение. В целом, задача может быть разделена на две: одна связана с поиском оптимального порядка прибытия судов, вторая — с выбором оптимальных моментов прибытия при заданном порядке. Последняя подзадача достаточно просто решается, поскольку чаще всего может быть формализована как задача линейного программирования. Однако первая решается значительно сложнее, для ее решения применяются разнообразные методы — от эвристических и генетических процедур до подходов смешанного целочисленного линейного программирования. В статье предлагаются условия на параметры задачи, достаточные для того, чтобы порядок оптимальных моментов прибытия самолетов в точку слияния совпадал с порядком номинальных моментов. Это позволяет исключить первую подзадачу из решения всей задачи.

    Spiridonov A.A., Kumkov S.S.
    Keeping order of vessels in problem of safe merging aircraft flows, pp. 433-446

    Nowadays, the problem of creating an optimal safe schedule for arrival of aircraft coming in several flows to a checkpoint, where these flows join into one, is very important for air-traffic management. Safety of the resultant queue is present if there is a safe interval between neighbor arrivals to the merge point. Change of an arrival instant of an aircraft is provided by changing its velocity and/or usage of fragments of the air-routes scheme, which elongate or shorten the aircraft path. Optimality of the resultant queue is considered from the point of some additional demands: minimization of the deviation of the actual aircraft arrival instant from the nominal one, minimization of order changes in the resultant queue in comparison with the original one, minimization of fuel expenditures, etc. The optimality criterion to be minimized, which reflects these demands, is often taken as a sum of penalties for deviations of the assigned arrival instants from the nominal ones. Each individual penalty is considered in almost all papers as either the absolute value of the difference between the assigned and nominal arrival instants or a similar function with asymmetric branches (which punishes delays and accelerations of an aircraft in different ways). The problem can be divided into two subproblems: one is a search for an optimal order of aircraft in the resultant queue, and the other is a search for optimal arrival instants for a given order. The second problem is quite simple since it can be formalized in the framework of linear programming and solved quite efficiently. However, the first one is very difficult and now is solved by various methods. The paper suggests sufficient conditions for the problem, which guarantee that the order of the optimal assigned instants is the same as the order of the nominal ones and, therefore, exclude the first subproblem.

  3. В работе проводился расчет генерации шума вентилятора турбореактивного двухконтурного авиационного двигателя (ТРДД) для различных режимов его работы с помощью собственного программного пакета GHOST CFD, реализованного для графических процессоров (ГПУ). Программный пакет основан на схемах типа DRP (Dispersion Relation Preserving), имеющих высокий порядок аппроксимации и высокую разрешающую способность. Для интегрирования по времени также использовалась оптимизированная схема типа LDDRK (Low Dispersion and Dissipation Runge-Kutta). Для моделирования турбулентности использовался неявный метод крупных вихрей с релаксационной фильтрацией (LES-RF). В качестве ротор-статор-интерфейса применялись пересекающиеся (CHIMERA) сетки. Ускорение за счет использования ГПУ, по сравнению с обычным центральным процессором, составило до порядка 12-20 раз, при этом было достигнуто приемлемое время счета. Расчеты в GHOST CFD проводились в постановке «вентилятор - спрямляющий аппарат наружного контура (СА) с полными колесами лопаток». Результаты расчетов сравнивались как с экспериментальными данными, так и с результатами аналогичных расчетов в коммерческом программном пакете ANSYS CFX. При этом в части расчетов в ANSYS CFX учитывался и направляющий аппарат внутреннего контура (НА).

    The present paper considers the computation of noise generation by aircraft engine fan for different operating parameters with an in-house solver for Graphic Processing Units (GPUs), called GHOST CFD (GPU High Order Structured). The solver is based on DRP (Dispersion Relation Preserving) schemes which have a high order of approximation and a high resolution. An Optimized LDDRK (Low Dispersion and Dissipation Runge-Kutta) scheme was utilized for time integration. Large Eddy Simulation based on Relaxation Filtering (LES-RF) was used for the turbulence modeling. The solver implements overset (“CHIMERA”) meshes which were used as rotor-stator interface treatment. The speedup gained from GPUs utilization was about 12-20 times compared to modern 8-core CPU, allowing computations to be performed in a reasonable time period. The computations with GHOST CFD were performed in full annulus formulation with fan and outlet guide vane (OGV) blades. The results were compared with the experimental data as well as the results of similar computations in the commercial ANSYS CFX solver some of which also included inlet guide vane (IGV) blades.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref