Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматривается одна булева алгебра и ее пространство Стоуна как бикомпактное расширение счетного дискретного пространства. Доказаны некоторые свойства этого расширения.
We consider one Boolean algebra and its Stone space as a compactification of a countable discrete space. Some properties of the compactification are proved.
-
В данной работе рассматривается булева алгебра того же типа, что и алгебра, построенная Беллом, и пространство Стоуна этой булевой алгебры. Данное пространство является компактификацией счетного дискретного пространства N. Доказано существование изолированных точек в наросте данной компактификации, которые являются пределами некоторых сходящихся последовательностей. Также доказано, что любое открыто-замкнутое подмножество нашего пространства, которое гомеоморфно βω, является замыканием объединения конечного числа антицепей из N. В конце приведены два примера: замкнутое подмножество нароста без изолированных точек, которое не гомеоморфно βω\ω; подмножество нароста, которое гомеоморфно βω\ω, но не является замкнутым.
About Stone space of one Boolean algebra, pp. 19-24We consider the Boolean algebra of the same type as algebra constructed by Bell, and the Stone space of this Boolean algebra. This space is a compactification of a countable discrete space N. We prove that there are isolated points in a remainder of this compactification, which are limits of some convergent sequences. We prove that a clopen subset of our space, which is homeomorphic to βω, is a closure of the union of finitely many antichains from N. We construct two examples: a clopen subset of the remainder without isolated points, which is not homeomorphic to βω\ω; a subset of the remainder which is homeomorphic to βω\ω, but is not a clopen.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.