Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'capture problem':
Найдено статей: 29
  1. Рассматривается дифференциальная игра группы преследователей и одного убегающего при равных динамических возможностях всех участников. Получены необходимые и достаточные условия поимки в случае, когда убегающий стеснен фазовыми ограничениями.

    Bannikov A.S.
    On one problem of simple pursuit, pp. 3-11

    A differential game of the group of persecutors and one escapee is considered at equal dynamic opportunities of all participants. Necessary and sufficient conditions for capture are received in the case where the escapee is constrained by phase restrictions.

  2. Получены достаточные условия многократной поимки в примере Понтрягина с одинаковыми возможностями всех участников.

    Blagodatskikh A.I.
    Multiple capture in a Pontriagin's problem, pp. 3-12

    Sufficient conditions are obtained for the multiple capture in Pontriagin's problem with equal possibilities for all players.

  3. Рассматривается задача позиционной поимки группой преследователей одного убегающего при равенстве динамических и инерционных возможностей всех участников. Получены достаточные условия ε-поимки на конечном отрезке времени.

    We study a problem of positional capture of one evader by group of pursuers with equal dynamic and inertial capabilities of the players. Sufficient conditions for ε-capture on a finite interval of time are obtained.

  4. Рассматривается задача простого преследования группой преследователей двух убегающих при равных динамических возможностях всех участников и с фазовыми ограничениями на состояния убегающих в предположении, что убегающие используют одно и то же управление. Получены достаточные условия поимки.

    A differential game of the group of persecutors and two evaders is considered at equal dynamic opportunities of all participants and under equal phase restrictions imposed on the states of evaders. Sufficient solvability conditions are derived proceeding on the assumption that the evaders use the same control.

  5. Рассматривается линейная нестационарная дифференциальная игра преследования группы убегающих группой преследователей. Цель преследователей - поймать всех убегающих, цель убегающих - хотя бы одному уклониться от встречи. Все игроки обладают равными динамическими возможностями, геометрические ограничения на управление - строго выпуклый компакт с гладкой границей.

    Рассматривается вопрос о минимальном количестве убегающих, достаточном для уклонения от заданного числа преследователей из любых начальных позиций. Для оценки сверху этого количества используются достаточные условия разрешимости глобальной задачи уклонения. В предположении, что для поимки одного убегающего достаточно принадлежности начальной позиции убегающего внутренности выпуклой оболочки начальных позиций преследователей, строится оценка снизу.

    Полученная двухсторонняя оценка числа убегающих, достаточного для уклонения от встречи из любой начальной позиции от заданного числа преследователей, иллюстрируется примерами.

    A linear non-stationary differential pursuit game with a group of pursuers and a group of evaders is considered. The pursuers' goal is to catch all evaders and the evaders' goal is at least for one of them to avoid contact with pursuers.

    All players have equal dynamic capabilities, geometric constraints on the control are strictly convex compact set with smooth boundary. The point in question is the minimum number of evaders that is sufficient to evade a given number of pursuers from any initial position. Sufficient conditions for the solvability of the global problem of evasion are used as an upper estimate of this minimum. We assume that to capture one evader it suffices that the initial position of this evader lie in the interior of convex hull of initial positions of pursuers. Using this assumption we find a lower estimate of this minimum.

    The obtained two-sided estimate of the number of evaders sufficient to avoid contact with a given number of pursuers from any initial position is illustrated by examples.

  6. Рассматривается линейная задача уклонения одного убегающего от группы преследователей, при условии, что игроки обладают равными динамическими возможностями, убегающий не покидает пределы выпуклого конуса. Доказывается, что если число преследователей меньше размерности пространства, то убегающий уклоняется от встречи на интервале [0, ∞).

    Shuravina I.N.
    About one problem of evasion in a cone, pp. 13-16

    We consider a linear problem of evasion of one evador from the group of persecutors provided that players posess equal dynamic possibilities and evador does not leave a convex cone. It is proved, that if the number of persecutors is less then dimension of scape then the evador evades from a meeting on a positive semiaxis.

  7. Рассматривается задача простого группового преследования группы из m убегающих (m ≥ 1) с равными возможностями. Говорят, что в задаче преследования одного убегающего (m = 1) происходит многократная поимка, если заданное количество преследователей ловят его, при этом моменты поимки могут не совпадать. В задаче об одновременной поимке одного убегающего требуется, чтобы моменты поимки совпадали. В работе введено понятие одновременной многократной поимки группы убегающих (m ≥ 2). Одновременная многократная поимка всей группы убегающих происходит, если в результате преследования происходит одновременная многократная поимка каждого убегающего, причем в один и тот же момент времени. В терминах начальных позиций участников получены необходимые и достаточные условия одновременной многократной поимки всей группы убегающих.

    The present paper deals with the problem of simple pursuit of group of m evaders (m ≥ 1) with equal opportunities. We say that a multiple capture in the problem of pursuit of one evader (m = 1) holds if the specified number of pursuers catch him, possibly at different times. The problem of the simultaneous capture of one evader requires that capture moments coincide. We introduce the concept of multiple simultaneous capture of the whole group of evaders (m ≥ 2). We say that the simultaneous multiple capture of the whole group of evaders holds if the simultaneous multiple capture of every evader holds in the same time. We obtain necessary and sufficient conditions for simultaneous multiple capture of the whole group of evaders in terms of initial positions of the participants.

  8. Рассматривается линейная задача преследования группой преследователей двух убегающих при равных динамических возможностях всех участников и с фазовыми ограничениями на состояния убегающих в предположении, что убегающие используют одно и то же управление. Движение каждого участника имеет вид $\dot z+a(t)z=w.$ Геометрические ограничения на управления - строго выпуклый компакт с гладкой границей, терминальные множества - начало координат. Предполагается, что убегающие в процессе игры не покидают пределы выпуклого конуса. Целью преследователей является поимка двух убегающих, цель группы убегающих противоположна. Говорят, что в задаче преследования происходит поимка, если существуют два преследователя, из заданной группы преследователей, которые ловят убегающих, при этом моменты поимки могут не совпадать. В терминах начальных позиций получены достаточные условия поимки двух убегающих. Приведены примеры, иллюстрирующие полученные результаты.

    We consider a linear problem of pursuing two evaders by a group of persecutors in case of equal dynamic opportunities of all participants and under phase restrictions imposed on the states of evaders. We assume that the evaders use the same control. The movement of each participant has the form $ \dot z + a (t) z = w. $ Geometric constraints on the control are strictly convex compact set with smooth boundary, and terminal sets are the origin of coordinates. It is assumed that the evaders do not leave the convex cone. The aim of a group of pursuers is to capture two evaders; the aim of a group of evaders is opposite. We say that a capture holds in the problem of pursuing two evaders if among the specified number of pursuers there are two of them who catch the evaders, possibly at different times. We obtain sufficient conditions for capturing two evaders in terms of initial positions. The results obtained are illustrated by examples.

  9. Рассматривается задача преследования группы из m убегающих (m≥1) в конфликтно управляемом процессе с равными возможностями. Говорят, что в задаче преследования одного убегающего (m=1) происходит многократная поимка, если заданное количество преследователей ловят его, при этом моменты поимки могут не совпадать. В задаче об одновременной многократной поимке одного убегающего требуется, чтобы моменты поимки совпадали. Одновременная многократная поимка всей группы убегающих (m≥2) происходит, если в результате преследования происходит одновременная многократная поимка каждого убегающего, причем в один и тот же момент времени. В терминах начальных позиций участников получены необходимые и достаточные условия одновременной многократной поимки всей группы убегающих.

    The present paper deals with the problem of pursuit of the group of m evaders (m1) in a conflict-controlled process with equal opportunities. We say that a multiple capture in the problem of pursuit of one evader (m=1) holds if the specified number of pursuers catch him, possibly at different times. The problem of the simultaneous multiple capture of one evader requires that capture moments coincide. We say that the simultaneous multiple capture of the whole group of evaders (m2) holds if the simultaneous multiple capture of every evader holds at the same time. We obtain necessary and sufficient conditions for simultaneous multiple capture of the whole group of evaders in terms of initial positions of the participants.

  10. Для двух нестационарных задач группового преследования (обобщенного примера Л.С. Понтрягина и колебательного конфликтно управляемого процесса) с равными динамическими и инерционными возможностями всех участников получены достаточные условия поимки хотя бы одного убегающего, при условии что убегающие используют одно и то же управление.

    The sufficient conditions are obtained for the capture of at least one evader in two non-stationary problems of the pursuit under the condition that all evaders use the same control.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref