Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматривается дифференциальная игра группы преследователей и одного убегающего при равных динамических возможностях всех участников. Получены достаточные условия уклонения от встречи в классе позиционных контрстратегий.
Differential game of group of persecutors and one evader is considered under equal dynamic possibilities of all players. Sufficient conditions of evasion in a counter-strategy class are received.
-
Рассматривается задача простого преследования группой преследователей двух убегающих при равных динамических возможностях всех участников и с фазовыми ограничениями на состояния убегающих в предположении, что убегающие используют одно и то же управление. Получены достаточные условия поимки.
A differential game of the group of persecutors and two evaders is considered at equal dynamic opportunities of all participants and under equal phase restrictions imposed on the states of evaders. Sufficient solvability conditions are derived proceeding on the assumption that the evaders use the same control.
-
Рассматривается линейная нестационарная дифференциальная игра преследования группы убегающих группой преследователей. Цель преследователей - поймать всех убегающих, цель убегающих - хотя бы одному уклониться от встречи. Все игроки обладают равными динамическими возможностями, геометрические ограничения на управление - строго выпуклый компакт с гладкой границей.
Рассматривается вопрос о минимальном количестве убегающих, достаточном для уклонения от заданного числа преследователей из любых начальных позиций. Для оценки сверху этого количества используются достаточные условия разрешимости глобальной задачи уклонения. В предположении, что для поимки одного убегающего достаточно принадлежности начальной позиции убегающего внутренности выпуклой оболочки начальных позиций преследователей, строится оценка снизу.
Полученная двухсторонняя оценка числа убегающих, достаточного для уклонения от встречи из любой начальной позиции от заданного числа преследователей, иллюстрируется примерами.
A linear non-stationary differential pursuit game with a group of pursuers and a group of evaders is considered. The pursuers' goal is to catch all evaders and the evaders' goal is at least for one of them to avoid contact with pursuers.
All players have equal dynamic capabilities, geometric constraints on the control are strictly convex compact set with smooth boundary. The point in question is the minimum number of evaders that is sufficient to evade a given number of pursuers from any initial position. Sufficient conditions for the solvability of the global problem of evasion are used as an upper estimate of this minimum. We assume that to capture one evader it suffices that the initial position of this evader lie in the interior of convex hull of initial positions of pursuers. Using this assumption we find a lower estimate of this minimum.
The obtained two-sided estimate of the number of evaders sufficient to avoid contact with a given number of pursuers from any initial position is illustrated by examples.
-
Мягкое убегание жестко скоординированных убегающих в нелинейной задаче группового преследования, с. 3-17Естественным обобщением дифференциальных игр двух лиц являются конфликтно управляемые процессы с участием группы управляемых объектов (хотя бы с одной из противоборствующих сторон). При этом наибольшую трудность для исследований представляют задачи конфликтного взаимодействия между двумя группами управляемых объектов. Специфика этих задач требует создания новых методов их исследования. В данной работе рассматривается нелинейная задача группового преследования группы жестко скоординированных (то есть использующих одинаковое управление) убегающих при условии, что маневренность убегающих выше. Цель убегающих - обеспечить мягкое убегание всей группы. Под мягким убеганием понимается несовпадение геометрических координат, ускорений и так далее для убегающего и всех преследователей. Для любых начальных позиций участников построено позиционное управление, обеспечивающее мягкое убегание от группы преследователей всех убегающих.
мягкое убегание, групповое преследование, нелинейные дифференциальные игры, конфликтно управляемые процессы
Weak evasion of a group of rigidly coordinated evaders in the nonlinear problem of group pursuit, pp. 3-17A natural generalization of differential two-person games is conflict controlled processes with a group of controlled objects (from at least one of the conflicting sides). The problems of conflict interaction between two groups of controlled objects are the most difficult-to-research. The specificity of these problems requires new methods to study them. This paper deals with the nonlinear problem of pursuing a group of rigidly coordinated evaders (i.e. using the same control) by a group of pursuers under the condition that the maneuverability of evaders is higher. The goal of evaders is to ensure weak evasion for the whole group. By weak evasion we mean non-coincidence of geometrical coordinates, speeds, accelerations and so forth for the evader and all pursuers. The position control is constructed for all possible initial positions of the participants; this control guarantees a weak evasion for all evaders.
-
Об одной задаче уклонения в конусе, с. 13-16Рассматривается линейная задача уклонения одного убегающего от группы преследователей, при условии, что игроки обладают равными динамическими возможностями, убегающий не покидает пределы выпуклого конуса. Доказывается, что если число преследователей меньше размерности пространства, то убегающий уклоняется от встречи на интервале [0, ∞).
About one problem of evasion in a cone, pp. 13-16We consider a linear problem of evasion of one evador from the group of persecutors provided that players posess equal dynamic possibilities and evador does not leave a convex cone. It is proved, that if the number of persecutors is less then dimension of scape then the evador evades from a meeting on a positive semiaxis.
-
Рассматривается задача простого группового преследования группы из m убегающих (m ≥ 1) с равными возможностями. Говорят, что в задаче преследования одного убегающего (m = 1) происходит многократная поимка, если заданное количество преследователей ловят его, при этом моменты поимки могут не совпадать. В задаче об одновременной поимке одного убегающего требуется, чтобы моменты поимки совпадали. В работе введено понятие одновременной многократной поимки группы убегающих (m ≥ 2). Одновременная многократная поимка всей группы убегающих происходит, если в результате преследования происходит одновременная многократная поимка каждого убегающего, причем в один и тот же момент времени. В терминах начальных позиций участников получены необходимые и достаточные условия одновременной многократной поимки всей группы убегающих.
поимка, многократная поимка, одновременная многократная поимка, преследование, убегание, дифференциальные игры, конфликтно управляемые процессы.The present paper deals with the problem of simple pursuit of group of m evaders (m ≥ 1) with equal opportunities. We say that a multiple capture in the problem of pursuit of one evader (m = 1) holds if the specified number of pursuers catch him, possibly at different times. The problem of the simultaneous capture of one evader requires that capture moments coincide. We introduce the concept of multiple simultaneous capture of the whole group of evaders (m ≥ 2). We say that the simultaneous multiple capture of the whole group of evaders holds if the simultaneous multiple capture of every evader holds in the same time. We obtain necessary and sufficient conditions for simultaneous multiple capture of the whole group of evaders in terms of initial positions of the participants.
-
Рассматривается линейная задача преследования группой преследователей двух убегающих при равных динамических возможностях всех участников и с фазовыми ограничениями на состояния убегающих в предположении, что убегающие используют одно и то же управление. Движение каждого участника имеет вид $\dot z+a(t)z=w.$ Геометрические ограничения на управления - строго выпуклый компакт с гладкой границей, терминальные множества - начало координат. Предполагается, что убегающие в процессе игры не покидают пределы выпуклого конуса. Целью преследователей является поимка двух убегающих, цель группы убегающих противоположна. Говорят, что в задаче преследования происходит поимка, если существуют два преследователя, из заданной группы преследователей, которые ловят убегающих, при этом моменты поимки могут не совпадать. В терминах начальных позиций получены достаточные условия поимки двух убегающих. Приведены примеры, иллюстрирующие полученные результаты.
On the capture of two evaders in a non-stationary pursuit-evasion problem with phase restrictions, pp. 12-20We consider a linear problem of pursuing two evaders by a group of persecutors in case of equal dynamic opportunities of all participants and under phase restrictions imposed on the states of evaders. We assume that the evaders use the same control. The movement of each participant has the form $ \dot z + a (t) z = w. $ Geometric constraints on the control are strictly convex compact set with smooth boundary, and terminal sets are the origin of coordinates. It is assumed that the evaders do not leave the convex cone. The aim of a group of pursuers is to capture two evaders; the aim of a group of evaders is opposite. We say that a capture holds in the problem of pursuing two evaders if among the specified number of pursuers there are two of them who catch the evaders, possibly at different times. We obtain sufficient conditions for capturing two evaders in terms of initial positions. The results obtained are illustrated by examples.
-
Рассматривается задача уклонения убегающего от группы преследователей в конечномерном евклидовом пространстве. Движение описывается линейной системой дробного порядка вида $$\left({}^C D^{\alpha}_{0+}z_i\right)=A z_i+u_i-v,$$ где ${}^C D^{\alpha}_{0+}f$ - производная по Капуто порядка $\alpha\in(0,1)$ функции $f$, $A$ - простая матрица. В начальный момент времени заданы начальные условия. Управления игроков ограничены одним и тем же выпуклым компактом. Убегающий дополнительно стеснен фазовыми ограничениями - выпуклым многогранным множеством c непустой внутренностью. В терминах начальных позиций и параметров игры получены достаточные условия разрешимости задачи уклонения.
Evasion from pursuers in a problem of group pursuit with fractional derivatives and phase constraints, pp. 309-314The paper deals with the problem of avoiding a group of pursuers in the finite-dimensional Euclidean space. The motion is described by the linear system of fractional order $$\left({}^C D^{\alpha}_{0+}z_i\right)=A z_i+u_i-v,$$ where ${}^C D^{\alpha}_{0+}f$ is the Caputo derivative of order $\alpha\in(0,1)$ of the function $f$ and $A$ is a simple matrix. The initial positions are given at the initial time. The set of admissible controls of all players is a convex compact. It is further assumed that the evader does not leave the convex polyhedron with nonempty interior. In terms of the initial positions and the parameters of the game, sufficient conditions for the solvability of the evasion problem are obtained.
-
Рассматривается задача преследования группы из m убегающих (m≥1) в конфликтно управляемом процессе с равными возможностями. Говорят, что в задаче преследования одного убегающего (m=1) происходит многократная поимка, если заданное количество преследователей ловят его, при этом моменты поимки могут не совпадать. В задаче об одновременной многократной поимке одного убегающего требуется, чтобы моменты поимки совпадали. Одновременная многократная поимка всей группы убегающих (m≥2) происходит, если в результате преследования происходит одновременная многократная поимка каждого убегающего, причем в один и тот же момент времени. В терминах начальных позиций участников получены необходимые и достаточные условия одновременной многократной поимки всей группы убегающих.
поимка, многократная поимка, одновременная многократная поимка, преследование, убегание, дифференциальные игры, конфликтно управляемые процессыThe present paper deals with the problem of pursuit of the group of m evaders (m≥1) in a conflict-controlled process with equal opportunities. We say that a multiple capture in the problem of pursuit of one evader (m=1) holds if the specified number of pursuers catch him, possibly at different times. The problem of the simultaneous multiple capture of one evader requires that capture moments coincide. We say that the simultaneous multiple capture of the whole group of evaders (m≥2) holds if the simultaneous multiple capture of every evader holds at the same time. We obtain necessary and sufficient conditions for simultaneous multiple capture of the whole group of evaders in terms of initial positions of the participants.
-
Работа посвящена развитию полиэдральных методов решения двух задач управления линейными многошаговыми системами с неопределенностями при фазовых ограничениях — задач терминального сближения и уклонения. Они возникают в системах с двумя управлениями, где цель одного — привести траекторию на заданное конечное множество в заданный момент времени, не нарушая фазовых ограничений, цель другого — противоположна. Предполагается, что конечное множество — параллелепипед, управления стеснены параллелотопозначными ограничениями, фазовые ограничения заданы в виде полос. Представлены методы решения обеих задач с использованием полиэдральных (параллелотопо- или параллелепипедо-значных) трубок. Методы решения задачи сближения предложены автором ранее, но здесь исследуются их дополнительные свойства. В частности, для случая без фазовых ограничений найдены гарантированные оценки для траектории, обеспечивающие ее нахождение внутри трубки. Даны удобные достаточные условия, гарантирующие получение невырожденных сечений в процессе вычислений. Для задачи уклонения сначала рассматривается общая схема решения, а затем предлагаются полиэдральные методы. Приводятся и сравниваются целые параметрические семейства внешних и внутренних полиэдральных оценок трубок разрешимости обеих задач. Приведен иллюстрирующий пример.
системы с неопределенностью, синтез управлений, задача сближения, задача уклонения, полиэдральные методы, параллелотопы, параллелепипеды
On solving terminal approach and evasion problems for linear discrete-time systems under state constraints, pp. 204-221The paper is devoted to elaboration of polyhedral techniques for solving two control problems for linear discrete-time systems with uncertainties under state constraints, namely, the terminal approach problem and the terminal evasion one. Such problems arise in systems with two controls, where the aim of the first is to steer the trajectory onto a given terminal set at a given instant without violating the state constraints, the aim of the other is opposite. It is assumed that the terminal set is a parallelepiped, the controls are bounded by parallelotope-valued constraints, and the state constraints are given in the form of so-called zones. We present techniques for solving both problems basing on polyhedral (parallelotope-valued or parallelepiped-valued) tubes. The techniques for solving the approach problem were proposed by the author earlier, but here additional properties of them are investigated. In particular, for the case without state constraints, guaranteed estimates are found for the trajectory that ensure that it is inside the tube. Convenient sufficient conditions are given to guarantee the obtaining of nondegenerate cross-sections during the calculations. For the evasion problem, a common solution scheme is considered, and then polyhedral techniques are proposed. The whole parametric families of external and internal polyhedral estimates for the solvability tubes for both problems are presented and compared. An illustrative example is given.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.