Текущий выпуск Выпуск 2, 2025 Том 35
Результыты поиска по 'computational modelling':
Найдено статей: 41
  1. Рассмотрена математическая модель конкуренции в условиях биологической инвазии, записываемая в виде системы нелинейных уравнений параболического типа. Изучается конкуренция двух близкородственных видов — резидента и инвайдера. Динамика популяций на неоднородном ареале определяется локальным взаимодействием и диффузионным распространением. Для популяции инвайдера учитывается межвидовой таксис и направленная миграция, вызванная неоднородностью жизненных условий. В вычислительных экспериментах определены наборы миграционных параметров, отвечающих различным инвазивным сценариям. Дан анализ влияния начальных распределений на конкурентное исключение и сосуществование видов.

    A mathematical model of competition under conditions of biological invasion, written in the form of a system of nonlinear parabolic equations, is considered. The competition of two closely related species — resident and invader — is studied. The dynamics of populations in a heterogeneous area is determined by local interaction and diffusion. For the invader population, interspecific taxis and directed migration caused by heterogeneity of living conditions are taken into account. In computational experiments, sets of migration parameters corresponding to various invasion scenarios are determined. An analysis of the influence of initial distributions on competitive exclusion and coexistence of species is given.

  2. Изучаются свойства дискретной вариационной задачи динамической аппроксимации в комплексном евклидовом (L + 1)-мерном пространстве E. Она обобщает известные задачи среднеквадратической полиномиальной аппроксимации функций, заданных своими отсчетами в конечном интервале. В рассматриваемой задаче аппроксимация последовательности y = {yi}L0 отсчетов функции y(t) ∈ L2[0, T], T = Lh на сетке Ih осуществляется решениями однородных линейных дифференциальных или разностных уравнений заданного порядка n с постоянными, но, возможно, неизвестными коэффициентами. Тем самым показано, что в последнем случае задача аппроксимации включает в себя и задачу идентификации. Анализ ее особенностей - основная тема статьи. Ставится задача нахождения вектора коэффициентов разностного уравнения Σn0 ŷi+k αi = 0, где k = 0,Ln. Оптимизируются коэффициенты и начальные условия переходного процесса y этого уравнения. Цель оптимизации - наилучшая аппроксимация исследуемого динамического процесса yE. Критерий аппроксимации  минимум величины ||yŷ||2E. Показано, что изучаемая вариационная задача сводится к задачам проектирования в E вектора y на ядра разностных операторов с неизвестными коэффициентами αωSEn+1. Здесь α - направление, S - сфера или гиперплоскость. Показана связь изучаемой задачи с задачами дискретизации и идентифицируемости. Тогда координаты вектора yE есть точное решение дифференциального уравнения на сетке Ih и y = ŷ. Дано сравнение изучаемой задачи вариационной идентификации с алгебраическими методами идентификации. Показано, что ортогональные дополнения к ядрам разностных операторов всегда имеют теплицев базис. Это приводит к быстрым проекционным алгоритмам вычислений. Показано, что задача нахождения оптимального вектора α сводится к задаче безусловной минимизации функционала идентификации, зависящего от направления в En+1. Предложена итерационная процедура его минимизации на сфере с широкой областью и высокой скоростью сходимости. Изучаемую вариационную задачу можно применять при математическом моделировании в управлении и научных исследованиях. При этом на конечных интервалах может использоваться, в частности, возможность кусочно-линейной динамической аппроксимации сложных динамических процессов разностными и дифференциальными уравнениями указанного типа.

     

    Some properties of the discrete variational problem of the dynamic approximation in the complex Euclidean (L + 1)-dimensional space are studied here. It generalizes familiar problems of the mean square polynomial approximation of the functions given on the finite interval in accordance with their references. In the problem under consideration sequence approximation y = {yi}L0 of the references of the function y(t) ∈ L2[0, T], T = Lh on the lattice Ih is achieved by solving homogeneous linear differential equations or difference equations of the given order n with constant but possibly unknown coefficients. Thus, it is shown that in the latter case the approximation problem also includes the identification problem. The analysis of its properties is the main subject of the article. The problem is set to find vector of coefficients of difference equation Σn0 ŷi+k αi = 0, where k = 0,L − n. Coefficients and initial conditions of the transient process by of this equation are optimized. The optimization purpose is to achieve the best approximation of the dynamic process y ∈ E being considered here. The approximation criterion is a minimum of the quantity ||y − ŷ||2E. The variational problem under study is shown to be reduced to the problem of projecting vector y in E on the kernels of the difference operators with unknown coefficients  αωSEn+1, where is a direction, S is a sphere or a hyperplane. The problem under study is shown to be related to the problems of the discretization and identifiability. In this case vector coordinates y ∈ E is an exact solution of differential equation on the lattice Ih and y = ŷ. The problem of the variational identification is compared with algebraic methods of identification. The orthogonal complement to the kernels of the difference operators are shown to always have Toeplitz basis. This results in fast projecting algorithms of computation. The problem of finding optimal vector α is shown to be reduced to the problem of the absolute minimization of the identification functional depending on the direction in En+1. The iterative procedure of its minimization on a sphere with wide domain and high speed of convergence is presented here. The variational problem considered here can be applied in mathematical modeling for control problem and research purposes. On the finite intervals, for example, it is possible to use piecewise-linear dynamic approximations of the complex dynamic processes with difference and differential equations of the specified type.

     

  3. Рассматривается антагонистическая линейно-выпуклая дифференциальная игра с показателем качества, оценивающим совокупность отклонений траектории движения в наперед заданные моменты времени от заданных целевых точек. Исследуется случай, когда не выполняется условие седловой точки в маленькой игре, также известное как условие Айзекса. Игра формализуется в классах смешанных стратегий управления игроков. Описывается численный метод для приближенного вычисления цены игры и построения оптимальных стратегий. Метод основывается на попятном построении выпуклых сверху оболочек вспомогательных программных функций. Приводятся результаты численных экспериментов на модельных примерах.

    A zero-sum linear-convex differential game with a quality index that estimates a set of deviations of a motion trajectory at given instants of time from given target points is considered. A case when the saddle point condition in a small game, also known as Isaac's condition, does not hold, is studied. The game is formalized in classes of mixed control strategies of players. A numerical method for approximate computation of the game value and optimal strategies is elaborated. The method is based on the recurrent construction of upper convex hulls of auxiliary program functions. The results of numerical experiments in model examples are given.

  4. Рассматривается процедура встраивания оптимизируемых фрагментов маршрутных решений в глобальные решения «большой» задачи, определяемые эвристическими алгоритмами. Постановка задачи маршрутизации учитывает некоторые особенности инженерной задачи о последовательной резке деталей, имеющих каждая один внешний и, возможно, несколько внутренних контуров. Последние должны подвергаться резке раньше внешнего, что приводит к большому числу условий предшествования. Данные условия активно используются в интересах снижения сложности вычислений. Тем не менее размерность задачи остается достаточно большой, что, в частности, не позволяет применять «глобальное» динамическое программирование и вынуждает к использованию эвристических алгоритмов (исследуемая задача относится к числу труднорешаемых в традиционном понимании). Поэтому представляет интерес разработка методов коррекции решений, получаемых на основе упомянутых алгоритмов. В настоящей работе такая коррекция реализуется посредством замены фрагментов (упомянутых решений), имеющих умеренную размерность, оптимальными «блоками», конструируемыми на основе динамического программирования с локальными условиями предшествования, которые согласуются с ограничениями исходной «большой» задачи. Предлагаемая замена не ухудшает, а, в типичных случаях, улучшает качество исходного «эвристического» решения, что подтверждается вычислительным экспериментом на многоядерной ПЭВМ.

    Предложенный алгоритм реализован в итерационном режиме: полученное после первой вставки на основе динамического программирования решение в виде пары «маршрут-трасса» принимается за исходное, для которого вновь конструируется вставка. При этом начало этой новой вставки выбирается случайно в пределах, определяемых возможностями формирования скользящего «окна» ощутимой, но все же достаточной для применения экономичной версии динамического программирования размерности. Далее процедура повторяется. Работа итерационного алгоритма иллюстрируется решением модельных задач, включая варианты с достаточно плотной «упаковкой» заготовок деталей на листе, что типично для машиностроительного производства.

    Petunin A.A., Chentsov A.G., Chentsov P.A.
    Local dynamic programming incuts in routing problems with restrictions, pp. 56-75

    The article is concerned with the procedure of insertion of optimizable fragments of route solutions into the global solutions of the «big» problem defined by heuristic algorithms. Setting of the route problem takes into account some singularities of the engineering problem about the sequential cutting of details each having one exterior and probably several interior contours. The latter ones must be subjected to cutting previously in comparison with the exterior contour, which leads to a great number of given preceding conditions. These conditions are actively used to decrease the computational complexity. Nevertheless, the problem dimensionality remains sufficiently large that does not permit to use “global’’ dynamic programming and forces heuristic algorithms to be used (the problem under investigation is a hard-solvable problem in the traditional sense). Therefore, it is interesting to develop the methods for correction of solutions based on the above-mentioned algorithms. In the present investigation, such correction is realized by the replacement of fragments (of the above-mentioned solutions) having a moderate dimensionality by optimal “blocks’’ constructed by dynamic programming with local preceding conditions which are compatible with the constraints of the initial “big’’ problem. The proposed replacement does not deteriorate, but, in typical cases, improves the quality of the initial heuristic solution. This is verified by the computing experiment on multi-core computer.

    The proposed algorithm is realized in the iterated regime: the solution (in the form of “route-trace’’) obtained after the first insertion on the basis of dynamic programming is taken as an initial solution for which the insertion is constructed again. In addition, the beginning of the new insertion is chosen randomly in the bounds defined by the possibilities of formation of a sliding “window’’ of the appreciable dimensionality which is in fact sufficient for the employment of the economical version of dynamic programming. Further, the procedure is repeated. The operation of the iterated algorithm is illustrated by solution of model problems including the versions with sufficiently dense “packing’’ of parts on a sheet, which is typical for the engineering production.

  5. Рассматривается задача маршрутизации перемещений с ограничениями и усложненными функциями стоимости. Предполагается, что объекты посещения суть мегаполисы (непустые конечные множества), при посещении которых должны выполняться некоторые работы, именуемые далее внутренними. По постановке задачи имеются ограничения в виде условий предшествования. Стоимость перемещений зависит от списка заданий, которые не выполнены на момент перемещения. Ситуация такого рода возникает, в частности, при аварийных ситуациях, связанных с работой АЭС и подобных происходящим в Чернобыле и Фукусиме. Речь идет об утилизации источников радиоактивного излучения, осуществляемой последовательно во времени; в этом случае исполнитель находится под воздействием источников, которые не были демонтированы на момент соответствующего перемещения. За счет этого в функциях стоимости, оценивающих воздействие радиации на исполнителя, возникает зависимость от списка невыполненных заданий. Последние состоят в том или ином варианте выключения соответствующего источника. В настоящем исследовании излагается подход к решению данной задачи параллельным алгоритмом, реализуемым на суперкомпьютере «УРАН».

    Chentsov A.G., Chentsov A.A., Grigoryev A.M.
    On one routing problem modeling movement in radiation fields, pp. 540-557

    We consider a routing problem with constraints and complicated cost functions. The visited objects are assumed to be clusters, or megalopolises (nonempty finite sets), and the visit to each of them entails certain tasks, which we call interior jobs. The order of visits is subject to precedence constraints. The costs of movements depend on the set of pending tasks (not yet complete at the time of the movement), which is also referred to as “sequence dependence”, “position dependence”, and “state dependence”. Such a dependence arises, in particular, in routing problems concerning emergencies at nuclear power plants, similar to the Chernobyl and Fukushima Daiichi incidents. For example, one could consider a disaster recovery problem concerned with sequential dismantlement of radiation sources; in this case, the crew conducting the dismantlement is exposed to radiation from the sources that have not yet been dealt with. This gives rise to dependence on pending tasks in the cost functions that measure the crew's radiation exposure. The latter dependence reflects the “shutdown” operations for the corresponding radiation sources. This paper sets forth an approach to a parallel solution for this problem, which was implemented and run on the URAN supercomputer.

  6. В статье предложена численная методика, основанная на методе конечных разностей, для приближенного решения нелокальной краевой задачи второго порядка для обыкновенных дифференциальных уравнений. Ясно, что мост, построенный с двумя опорными точками в каждой конечной точке, приводит к стандартному двухточечному локальному граничному условию, а мост, созданный с помощью многоточечных опор, соответствует многоточечному граничному условию. В то же время, если нелокальные граничные условия могут быть установлены вблизи каждой конечной точки многоточечного опорного моста, возникает двухточечное нелокальное граничное условие. Результаты расчетов для нелинейной модельной задачи представлены для проверки предложенной идеи. Проанализировано влияние изменения параметров на сходимость предложенного метода.

    In the article a numerical technique based on the finite difference method is proposed for the approximate solution of a second order nonlocal boundary value problem for ordinary differential equations. It is clear that a bridge designed with two support points at each end point leads to a standard two-point local boundary value condition, and a bridge contrived with multi-point supports corresponds to a multi-point boundary value condition. At the same time if non-local boundary conditions can be set up near each endpoint of a multi-point support bridge, a two-point nonlocal boundary condition arises. The computational results for the nonlinear model problem are presented to validate the proposed idea. The effect of parameters variation on the convergence of the proposed method is analyzed.

  7. Рассмотрена математическая модель дозвуковых нестационарных турбулентных течений несжимаемого газа, основанная на методе крупных вихрей. Приводятся описания модели подсеточной турбулентности и вычислительного алгоритма, представлены результаты параметрических расчетов турбулентных течений несжимаемого газа в прямоугольном канале при различных числах Рейнольдса.

    The Large Eddy Simulation mathematical model for the subsonic unsteady turbulent flow of incompressible gas has been considered. The subgrid turbulence model, computational algorithm and numerical results of parametrical study of incompressible gas flow of in square channel under various Reynolds numbers has been presented.

  8. Последние 15 лет в физической литературе активно изучаются майорановские локализованные состояния (МЛС) и сопутствующие их возникновению явления, такие, как изменение кондактанса и эффект Джозефсона, что обусловлено вероятным применением МЛС при создании квантового компьютера. В статье изучены собственные функции одномерного оператора Боголюбова-де Жена с дельтаобразным потенциалом в нуле, описывающие локализованные состояния с энергией в лакуне спектра (сверхпроводящей щели). Найдены вероятности прохождения в задаче рассеяния для этого оператора, когда энергии близки к границе сверхпроводящей щели. Эти задачи исследовались как для единого на всей прямой сверхпроводящего порядка, определяемого вещественной константой $\Delta,$ так и для сверхпроводящего порядка, определяемого функцией $\Delta \theta (-x)+\Delta e^{i\varphi} \theta (x)$ для $\varphi=0,\pi$ (т.е. для нулевого сверхпроводящего тока и тока, близкого к критическому). Используемый гамильтониан можно рассматривать как простейшую модель перехода Джозефсона. Доказано, что в обоих случаях существуют два МЛС, но лишь при определенных значениях параметров, т.е. МЛС неустойчивы. При этом вероятность прохождения равна нулю в обоих случаях.

    For the last 15 years, Majorana bounded states (MBSs) and associated phenomena, such as variation of conductance and the Josephson effect, have been actively studied in the physical literature. Research in this direction is motivated by a highly probable use of MBSs in quantum computing. The article studies the eigenfunctions of the one-dimensional Bogolyubov-de Gennes operator with a delta-shaped potential at zero, describing localized states with energy in the spectral gap (superconducting gap). The transmission probabilities are found in the scattering problem for this operator, when the energies are close to the boundary of the superconducting gap. These problems are studied both for a superconducting order that is the only one on the whole straight line and is defined by the real constant $\Delta,$ and for a superconducting order defined by the function $\Delta\theta(-x)+\Delta e^{i\varphi}\theta(x)$ for $\varphi=0,\pi$ (i.e., for zero superconducting current and for current close to critical). The Hamiltonian used can be considered as the simplest model of the Josephson junction. It is proved that in both cases there are two MBSs, but with certain values of the parameters, i.e., MBSs are unstable. Moreover, the probability of passage is zero in both cases.

  9. Проведено численное исследование процесса формирования сферического ударного импульса в газе и его взаимодействие с защитным барьером из водной пены, сопровождающееся образованием вихревых течений. Поставленная задача решена для случая двумерной осевой симметрии с использованием двухфазной газожидкостной модели, базирующейся на законах сохранения массы, импульса и энергии смеси и уравнении динамики объемного содержания фаз. Численное решение реализовано на базе открытого пакета OpenFOAM с применением стандартного решателя compressibleMultiphaseInterFoam, модифицированного в соответствии с условиями задачи и модельными представлениями. Дискретизация системы уравнений в выбранном солвере проведена методом контрольных объемов с применением вычислительного алгоритма Pimple. Показано значительное снижение интенсивности ударной волны при ее взаимодействии с преградой из водной пены и выявлены причины, приводящие к вихреобразованию в газовой области. Оценена достоверность полученных результатов сравнением с решением аналогичной задачи другими численными методами.

    The formation process of a spherical shock impulse in gas and its interaction with a protective aqueous foam barrier, accompanied by formation of vortex flows, are numerically investigated. The problem is solved in a two-dimensional axisymmetric formulation using a two-phase model of a gas-liquid mixture, which includes the laws of conservation of mass, momentum and energy of the mixture and an equation for the dynamics of volume content of phases.The numerical implementation is carried out on the basis of the OpenFOAM package using the standard compressibleMultiphaseInterFoam solver, modified in accordance with the conditions of the problem and model representations. The discretization of the system of equations in the chosen solver is carried out by the method of finite volumes using the computational Pimple algorithm. A significant decrease in the intensity of the shock wave in its interaction with the aqueous foam barrier is shown and the causes leading to vortex formation in the gas region are revealed. The reliability of the results obtained is estimated by comparison with solutions of a similar problem by other numerical methods.

  10. Потапов И.И., Потапов Д.И., Королёва К.С.
    О движении речного потока в сечении изогнутого русла, с. 577-593

    На закруглениях речного русла формируются вторичные поперечные течения. В зависимости от геометрии русла вторичных течений в створе может быть несколько, и они могут иметь различный масштаб. Даже малое вторичное поперечное течение влияет на параметры гидродинамического потока и это влияние необходимо учитывать при моделировании русловых процессов и исследовании береговых деформаций русла. Трехмерное моделирование таких разномасштабных процессов требует больших вычислительных затрат и на текущий момент возможно только для небольших модельных каналов. Поэтому для исследования береговых процессов в данной работе предложена модель пониженной размерности. Выполненная редукция задачи от трехмерной модели движения речного потока к двумерной модели потока в плоскости створа канала предполагает, что рассматриваемый гидродинамический поток является квазистационарным и для него выполнены гипотезы об асимптотическом поведении потока по потоковой координате створа. С учетом данных ограничений в работе сформулирована математическая модель задачи о движении стационарного турбулентного спокойного речного потока в створе канала. Задача сформулирована в смешанной постановке скорости–вихрь–функция тока. В качестве дополнительных условий для редукции задачи требуется задание граничных условий на свободной поверхности потока для поля скорости, определяемого в нормальном и касательном направлении к оси створа. Предполагается, что значения данного поля скорости должно быть определено из решения вспомогательных задач или получено из данных натурных или экспериментальных измерений. Для численного решения сформулированной задачи используется метод конечных элементов в формулировке Петрова–Галеркина. В работе получен дискретный аналог задачи и предложен алгоритм ее решения. Выполненные численные исследования показали в целом хорошую согласованность полученных решений с известными экспериментальными данными. Погрешности численных результатов авторы связывают с необходимостью более точного определения радиальной компоненты поля скорости в створе потока путем подбора и калибровки более подходящей модели вычисления турбулентной вязкости и более точного определения граничных условий на свободной границе створа.

    Potapov I.I., Potapov D.I., Koroleva K.S.
    On the river flow motion in the bend channel cross-section, pp. 577-593

    At the river bed curves, secondary flow normal to the main flow direction are formed. Depending on the channel geometry, there may be several secondary flows in the cross-section, and they may have different scales. Even a small secondary cross-section flow affects the parameters of the hydrodynamic flow and this influence must be taken into account when modeling riverbed processes and researching coast deformations of the channel. Three-dimensional modeling of such multi-scale processes requires large computational costs and is currently possible only for small model channels. Therefore, a reduced-dimensional model is proposed in this paper to study coastal processes. The performed reduction of the problem from a three-dimensional model of river flow motion to a two-dimensional one in the plane of the channel cross-section assumes that the hydrodynamic flow is quasi-stationary and the hypotheses on the asymptotic behavior of the flow along the flow coordinate are fulfilled for it. Taking into account these limitations, a mathematical model of the problem of a stationary turbulent calm river flow in a channel cross-section is formulated in this work. The problem is formulated in a mixed velocity–vortex–stream function formulation. Specifying of the boundary conditions on the flow free surface for the velocity field determined in the normal and tangential directions to the cross-section axis is required as additional conditions for the problem reduction. It is assumed that the values of this velocity field should be determined from the solution of auxiliary problems or obtained from data of natural or experimental measurements.

    The finite element method in the Petrov–Galerkin formulation is used for the numerical solution of the formulated problem. A discrete analog of the problem is obtained and an algorithm for its solution is proposed. The performed numerical studies showed generally good agreement between the obtained solutions and the known experimental data. The authors associate the errors in the numerical results with the need for a more accurate determination of the radial component of the velocity field in the cross-section by selecting and calibrating a more suitable model for turbulent viscosity calculating and a more accurate determination of the boundary conditions on the cross-section free boundary.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref