Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В работе рассматривается краевая задача для нелинейного эволюционного уравнения в частных производных, приведенная в перенормированном виде. Данная краевая задача возникает в механике роторных систем и описывает поперечные колебания вращающегося ротора постоянного сечения из вязкоупругого материала, концы которого шарнирно закреплены. Изучен вопрос об устойчивости нулевого состояния равновесия, найдено критическое значение скорости вращения ротора, при превышении которого возникают незатухающие колебания. Найдены точные решения изучаемой краевой задачи в виде одномодовых по пространственной переменной и периодической по времени функций. Выведены условия устойчивости таких решений, а также в ряде случаев дан анализ условий устойчивости. В работе показано отсутствие многомодовых периодических по времени решений. Проанализированы базовые, но важные с прикладной точки зрения частные случаи данной нелинейной краевой задачи. Все результаты анализа нелинейной краевой задачи носят аналитический характер. Их вывод опирается на качественную теорию бесконечномерных динамических систем.
We consider a boundary-value problem for the nonlinear evolution partial differential equation, given in renormalized form. This problem appears in rotary system mechanics and describes the transverse vibrations of the rotating rotor of a constant cross-section from a viscoelastic material whose ends are pivotally fixed. The question of the stability of the zero equilibrium state is studied, the critical value of the rotor speed is found, above which continuous oscillations occur. Exact solutions of the boundary-value problem are found in the form of single-mode functions with respect to the spatial variable and functions periodic in time. The stability conditions for such solutions are derived, and in some cases an analysis of the stability conditions is given. The paper shows the absence of multimode time-periodic solutions. The basic and important (from an applied point of view) particular cases of this nonlinear boundary-value problem are analyzed. All the results of the analysis of a nonlinear boundary-value problem are analytical. Their conclusion is based on the qualitative theory of infinite-dimensional dynamical systems.
-
Обсуждается вопрос о возбуждении параметрических колебаний защемленной одним концом консольной балки (цилиндрической трубки), внутренняя полость которой заполнена идеальной несжимаемой жидкостью. Решаются гидродинамическая задача о взаимодействии стенок балки и жидкости и задача о параметрических поперечных колебаниях консоли.
In this paper we discuss a question of exciting parametric oscillations of the balk with one end block up (cylindrical tube), internal value of which is filled with ideal incompressible liquid. First task is a hydrodynamic task about interaction of the walls of console and liquid and second task is about parametric cross oscillations of console.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.