Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'балка':
Найдено статей: 5
  1. Для класса динамических систем, включающего в себя уравнения колебаний упругой балки на упругом основании, автономные системы обыкновенных дифференциальных уравнений, системы гидродинамического типа и др., изложена процедура приближенного вычисления амплитуд периодических решений, бифурцирующих из точек покоя при наличии резонансов.

  2. Иманбетова А.Б., Сарсенби А.А., Сейлбеков Б.Н.
    Обратные задачи для уравнения колебания балки с инволюцией, с. 452-466

    В этой статье рассматриваются обратные задачи для уравнения гиперболического вида четвертого порядка с инволюцией. Существование и единственность решения изучаемых обратных задач устанавливается методом разделения переменных. Для применения метода разделения переменных доказываем базисность Рисса собственных функций дифференциального оператора четвертого порядка с инволюцией в пространстве ${{L}_{2}}(-1,1)$. При доказательстве теорем о существовании и единственности решения широко используем неравенство Бесселя для коэффициентов разложений в ряд Фурье в пространстве ${{L}_{2}}(-1,1)$. Показана существенная зависимость существования решения от коэффициента уравнения $\alpha$. В каждом из случаев $\alpha <-1$, $\alpha >1$, $-1<\alpha <1$ выписаны представления решений в виде рядов Фурье по собственным функциям краевых задач для уравнения четвертого порядка с инволюцией.

  3. Михайловский Е.И., Никитенков В.Л.
    Оболочечный аналог теоремы о пяти моментах, с. 100-106

    Полученный ранее для длинной многоопорной цилиндрической оболочки аналог балочной теоремы о трех моментах, основанный на замечательных свойствах простого краевого эффекта, обобщается на случай упругоподатливых опор в виде так называемого оболочечного аналога теоремы о пяти моментах.

  4. Рассматривается задача идентификации условий закрепления балки по пяти собственным частотам ее колебаний. На основе условий Плюккера, возникающих при восстановлении  матрицы по ее минорам  максимального порядка, построено множество корректности задачи и доказана корректность ее по А.Н. Тихонову. Найдено явное решение задачи идентификации матрицы краевых условий, выписанное в терминах характеристического определителя соответствующей спектральной задачи. Приведены соответствующие примеры.

  5. Обсуждается вопрос о возбуждении параметрических колебаний защемленной одним концом консольной балки (цилиндрической трубки), внутренняя полость которой заполнена идеальной несжимаемой жидкостью. Решаются гидродинамическая задача о взаимодействии стенок балки и жидкости и задача о параметрических поперечных колебаниях консоли.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref