Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'discrete time-varying linear system':
Найдено статей: 3
  1. Работа посвящена исследованию свойства интегральной разделенности линейных систем с дискретным временем. Согласно определению система $x(m+1)=A(m)x(m),$ $m\in\mathbb N,$ $x\in\mathbb R^n,$ называется системой с интегральной разделенностью, если она имеет фундаментальную систему решений $x^1(\cdot),\ldots,x^n(\cdot)$ такую, что при некоторых $\gamma>0$, $a>1$ и всех натуральных $m>s$, $i\leqslant n-1$ выполнены неравенства $$ \dfrac{\|x^{i+1}(m)\|}{\|x^{i+1}(s)\|}\geqslant\gamma a^{m-s}\dfrac{\|x^{i}(m)\|}{\|x^{i}(s)\|}. $$ Понятие интегральной разделенности систем с непрерывным временем было введено Б.Ф. Быловым в 1965 году. Доказаны критерии интегральной разделенности систем с дискретным временем: приводимость к диагональному виду с интегрально разделенной диагональю; устойчивость и некратность показателей Ляпунова. Подробно исследовано также свойство диагонализируемости систем с дискретным временем. Доказательства учитывают специфику этих систем.

    Banshchikova I.N., Popova S.N.
    On the property of integral separation of discrete-time systems, pp. 481-498

    This paper is devoted to the study of the property of an integral separation of discrete time-varying linear systems. By definition, the system $x(m+1)=A(m)x(m),$ $m\in\mathbb N,$ $x\in\mathbb R^n,$ is called a system with integral separation if it has a basis of solutions $x^1(\cdot),\ldots,x^n(\cdot)$ such that for some $\gamma>0$, $a>1$ and all natural $m>s$, $i\leqslant n-1$ the inequalities $$ \dfrac{\|x^{i+1}(m)\|}{\|x^{i+1}(s)\|}\geqslant\gamma a^{m-s}\dfrac{\|x^{i}(m)\|}{\|x^{i}(s)\|}. $$ are satisfied. The concept of integral separation of systems with continuous time was introduced by B.F. Bylov in 1965. The criteria for the integral separation of systems with discrete time are proved: reducibility to diagonal form with an integrally separated diagonal; stability and nonmultiplicity of Lyapunov exponents. The property of diagonalizability of discrete-time systems is also studied in detail. The evidence takes into account the specifics of these systems.

  2. Пусть зафиксирован некоторый класс возмущений матрицы коэффициентов $A(\cdot)$ дискретной линейной однородной системы вида $$x(m+1)=A(m)x(m),\quad m\in\mathbb Z,\quad x\in\mathbb R^n,$$ с вполне ограниченной на $\mathbb Z$ матрицей $A(\cdot)$. Спектральным множеством этой системы, отвечающим заданному классу возмущений, называем совокупность полных спектров показателей Ляпунова возмущенных систем, когда возмущения пробегают весь заданный класс. Основное внимание в работе уделено классу ${\cal R}$ возмущенных систем вида $$y(m+1)=A(m)R(m)x(m),\quad m\in\mathbb Z,\quad y\in\mathbb R^n,$$ с вполне ограниченными на $\mathbb Z$ матрицами $R(\cdot)$, и его подклассам ${\cal R}_{\delta}$ с матрицами $R(\cdot)$, удовлетворяющими оценке $\sup_{m\in\mathbb Z}\|R(m)-E\|<\delta$, где $\delta>0$. Доказано, что если показатели Ляпунова исходной системы устойчивы, то спектральное множество $\lambda({\cal R})$, отвечающее классу ${\cal R}$, совпадает с множеством всех упорядоченных по возрастанию наборов из $n$ чисел, при этом для каждого $\Delta>0$ существует такое $\ell=\ell(\Delta)>0$, что для любого $\delta<\Delta$ спектральное множество $\lambda({\cal R}_{\ell\delta})$ содержит в себе $\delta$-окрестность полного спектра показателей Ляпунова невозмущенной системы.

    Let us fix a certain class of perturbations of the coefficient matrix $A(\cdot)$ for a discrete time-varying linear system $$x(m+1)=A(m)x(m),\quad m\in\mathbb Z,\quad x\in\mathbb R^n,$$ where $A(\cdot)$ is completely bounded on $\mathbb Z$, i.e., $\sup_{m\in\mathbb Z}\bigl(\|A(m)\|+\|A^{-1}(m)\|\bigr)<\infty$. The spectral set of this system, corresponding to a given class of perturbations, is a collection of all Lyapunov spectra (with multiplicities) for perturbed systems, when the perturbations range over this class all. The main attention is paid to the class ${\cal R}$ of perturbed systems $$y(m+1)=A(m)R(m)y(m),\quad m\in\mathbb Z,\quad y\in\mathbb R^n,$$ where $R(\cdot)$ is completely bounded on $\mathbb Z$, as well as its subclasses ${\cal R}_{\delta}$, where $\sup_{m\in\mathbb Z}\|R(m)-E\|<\delta$, $\delta>0$. For an original system with stable Lyapunov exponents, we prove that the spectral set $\lambda({\cal R})$ of class ${\cal R}$ coincides with the set of all ordered ascending sets of $n$ numbers. Moreover, for any $\Delta> 0$ there exists an $\ell =\ell(\Delta)> 0 $ such that for any $\delta<\Delta$ the spectral set $\lambda({\cal R}_{\ell\delta})$ contains the $\delta$-neighborhood of the Lyapunov spectrum of the unperturbed system.

  3. Рассматривается дискретная линейная однородная система

    $$x(m+1)=A(m)x(m),\quad m\in\mathbb Z,\quad x\in\mathbb R^n, \qquad\qquad (1)$$

    с вполне ограниченной матрицей $A(\cdot)$ и полным спектром показателей Ляпунова $\lambda_1(A)\leqslant\ldots\leqslant\lambda_n(A)$. Показатели Ляпунова системы (1) называются устойчивыми, если для любого $\varepsilon>0$ найдется такое $\delta>0$, что для всякой вполне ограниченной на $\mathbb N$ $n\times n$-матрицы $R(\cdot)$, удовлетворяющей оценке $\sup_{m\in\mathbb N}\|R(m)-E\|<\delta$, для полного спектра показателей Ляпунова $\lambda_1(AR)\leqslant\ldots\leqslant\lambda_n(AR)$ возмущенной системы

    $$z(m+1)=A(m)R(m)z(m),\quad m\in\mathbb Z,\quad x\in\mathbb R^n,$$

    справедливо неравенство $\max_{j=1,\ldots,n}|\lambda_j(A)-\lambda_j(AR)|<\varepsilon$. В работе построен пример системы вида (1) с неустойчивыми показателями Ляпунова.

    We consider a discrete time-varying linear system

    $$x(m+1)=A(m)x(m),\quad m\in\mathbb Z,\quad x\in\mathbb R^n,\qquad\qquad (1)$$

    where $A(\cdot)$ is completely bounded on $\mathbb N$, i.e., $\sup_{m\in\mathbb N}\bigl(\|A(m)\|+\|A^{-1}(m)\|\bigr)<\infty$. Let $\lambda_1(A)\leqslant\ldots\leqslant\lambda_n(A)$ be the Lyapunov spectrum of the system (1). It is called stable if for any $\varepsilon>0$ there exists a $\delta>0$ such that for every completely bounded $n\times n$-matrix $R(\cdot)$, $\sup_{m\in\mathbb N}\|R(m)-E\|<\delta$, the inequality $$\max_{j=1,\ldots,n}|\lambda_j(A)-\lambda_j(AR)|<\varepsilon $$ holds. We construct an example of the system (1) with unstable Lyapunov spectrum.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref