Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'dynamic contact analysis':
Найдено статей: 3
  1. Рассматривается построение и исследование неявных численных схем интегрирования задач динамического контактного взаимодействия двух контактирующих трехмерных тел без трения в рамках альтернирующего метода Шварца. Приводятся результаты тестирования контактного алгоритма декомпозиции Шварца с использованием схемы HTT-$\alpha$ в комбинации с методом перераспределения массы на границе области контакта.

    Implicit integration scheme for Schwarz alternating method for dynamic contact interaction problems of two interacting volumetric bodies without friction is considered. The paper presents the results of testing a contact algorithm of Schwarz domain decomposition using HTT-$\alpha$ scheme in consistent method redistribution of mass on the boundary of contact. To prevent artificial oscillations on the contact boundary together with common dissipative properties of the $\alpha$-scheme, the consistent mass redistribution method was used. The main advantage of this approach is the option to use multigrid methods to speed up the algorithm on subdomains, also there is no need for contact elements, contact parameters, Lagrange multipliers or regularization. Numerical examples including various contact zones, different materials of contact bodies and comparisons with measurements of other methods show the wide applicability of the derived algorithm.

  2. Рассматривается задача о скольжении однородного прямого цилиндра произвольной формы (шайбы) по горизонтальной плоскости под действием сил сухого трения. Пятно контакта цилиндра с плоскостью совпадает с его основанием. Одной из центральных гипотез в работе является выбор математической модели взаимодействия малого элемента поверхности шайбы с плоскостью. Предполагается, что данное явление описывается законом сухого трения Амонтона–Кулона. В данной работе основное внимание уделено качественному анализу уравнений движения системы, который позволит описать динамику при малых значениях кинетической энергии системы (финальную динамику). Сформулированы и доказаны качественные свойства динамики произвольных шайб. Приведены примеры, показывающие различие финальной динамики шайб, опирающихся на шероховатую плоскость круглым основанием, центрально-симметричным и произвольной формы.

    Burlakov D.S., Seslavina A.A.
    On free movement of puck on horizontal plane, pp. 125-139

    We consider the problem of a homogeneous direct cylinder of an arbitrary form (a puck) sliding on a horizontal surface under the action of dry friction forces. The surface contact spot of the cylinder coincides with its base. One of the central hypotheses in the work is the choice of a mathematical model of interaction between a small surface element of a puck and a plane. It is assumed, that the current effect is described by the Amonton–Coulomb’s law of friction. In the present work the basic attention is given to the qualitative analysis of the equations of motion for systems, the one which allow to describe dynamics at small values of the system’s kinetic energy (final dynamics). Qualitative properties of dynamics for arbitrary pucks are formulated and proved. We present examples illustrating the difference in final dynamics for pucks with round, centrosymmetrical and arbitrary bases on a rough surface.

  3. В работе определены границы применимости квазистационарного подхода в моделировании динамики жидкости, испаряющейся с подложки (при постоянной площади контакта) и в открытой цилиндрической ячейке капли. Для сравнения рассматривается нестационарная модель. Нестационарная система уравнений (с полной формой записи уравнения движения) и квазистационарная система уравнений решаются численно. Расчеты проведены при различных значениях скорости испарения и капиллярного числа на примере капель воды и этиленгликоля. Анализ расчетных данных показал, что на финальной стадии испарения капли чистого растворителя результаты, полученные с использованием двух моделей, расходятся. На конечном этапе процесса скорость радиального течения, вычисленная с помощью нестационарной модели, точнее согласуется с экспериментальными данными, чем результат, полученный на базе квазистационарного подхода. Этот факт объясняется тем, что на последней стадии испарения квазистационарное приближение плохо работает ввиду стремительного относительного изменения толщины пленки и больших значений скоростей.

    Applicability limits of a quasisteady approach to modelling the fluid dynamics in evaporated drop on a substrate (with constant contact area) and in circular well are defined in this paper. A nonsteady model is considered for comparison. Quasisteady and nonsteady (with the full-form equation of motion) sets of equations have been solved numerically. The modeling is carried out at different values of evaporation rate and capillary number. Water and ethylene glycol drops were taken as examples. Analysis of calculated data shows that results obtained for the final stage of pure solvent evaporation by using two models differ from each other. Velocity of a radial flow calculated with the help of nonsteady model agrees with experimental data much better than the result obtained using a quasisteady approach at the final stage of process. This is because at the final stage of evaporation the quasisteady approach works poorly due to the rapid changes in the relative film thickness and high velocities.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref