Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматривается управляемая система, заданная линейной стационарной системой дифференциальных уравнений с запаздыванием $$ \dot x(t)=Ax(t)+A_1x(t-h)+Bu(t),\quad y(t)=C^*x(t),\quad t>0. \qquad\qquad (1) $$ Управление в системе $(1)$ строится в виде линейной обратной связи по выходу $u(t)=Q_0 y(t)+Q_1 y(t-h)$. Исследуется задача назначения конечного спектра для замкнутой системы: требуется построить коэффициенты $Q_0$, $Q_1$ обратной связи таким образом, чтобы характеристический квазиполином замкнутой системы обращался в полином с произвольными наперед заданными коэффициентами. Получены условия на коэффициенты системы $(1)$, при которых найден критерий разрешимости данной задачи назначения конечного спектра. Полученные результаты распространяются на системы с несколькими запаздываниями. Получены следствия о стабилизации системы $(1)$, а также системы вида $(1)$ с несколькими запаздываниями, посредством линейной статической обратной связи по выходу с запаздыванием.
Finite spectrum assignment problem in linear systems with state delay by static output feedback, pp. 463-473We consider a control system defined by a linear time-invariant system of differential equations with delay $$ \dot x(t)=Ax(t)+A_1x(t-h)+Bu(t),\quad y(t)=C^*x(t),\quad t>0. \qquad\qquad (1) $$ We construct the controller for the system $(1)$ as linear output feedback $u(t)=Q_0 y(t)+Q_1 y(t-h)$. We study a finite spectrum assignment problem for the closed-loop system. One needs to construct gain matrices $Q_0$, $Q_1$ such that the characteristic quasipolynomial of the closed-loop system becomes a polynomial with arbitrary preassigned coefficients. We obtain conditions on coefficients of the system $(1)$ under which the criterion was found for solvability of the finite spectrum assignment problem. The obtained result extends to systems with several delays. Corollaries on stabilization by linear static output feedback with delay are obtained for system $(1)$ as well as for systems of type $(1)$ with several delays.
-
Рассматривается билинейная управляемая система, заданная линейной стационарной системой дифференциальных уравнений с запаздыванием в состоянии. Исследуется задача назначения произвольного конечного спектра посредством стационарного управления. Требуется построить постоянный вектор управления таким образом, чтобы характеристический квазиполином замкнутой системы обращался в полином с произвольными наперед заданными коэффициентами. Получены условия на коэффициенты системы, при которых найден критерий разрешимости данной задачи назначения конечного спектра. Критерий выражен в терминах ранговых условий для матриц специального вида. Показана взаимосвязь этих ранговых условий со свойством согласованности усеченной системы без запаздывания. Получены следствия о стабилизации билинейной системы с запаздыванием. Результаты обобщают полученные ранее результаты о назначении спектра для линейных систем со статической обратной связью по выходу с запаздыванием и для билинейных систем без запаздывания. Полученные результаты переносятся на билинейные системы с запаздыванием с дискретным временем. Рассмотрен иллюстрирующий пример.
We consider a bilinear control system defined by a linear time-invariant system of differential equations with delay in the state variable. We study an arbitrary finite spectrum assignment problem by stationary control. One needs to construct constant control vector such that the characteristic quasi-polynomial of the closed-loop system becomes a polynomial with arbitrary preassigned coefficients. We obtain conditions on coefficients of the system under which the criterion was found for solvability of this finite spectrum assignment problem. This criterion is expressed in terms of rank conditions for matrices of the special form. Interconnection of these rank conditions with the property of consistency for truncated system without delay is shown. Corollaries on stabilization of a bilinear system with delay are obtained. The results extend the previously obtained results on spectrum assignment for linear systems with static output feedback with delay and for bilinear systems without delay. The results obtained are transferred to discrete-time bilinear systems with delay. An illustrative example is considered.
-
В работе рассматривается задача Коши для системы квазилинейных уравнений первого порядка специального вида. Система представлена в симметричном виде, фазовая переменная n-мерная. Рассматриваемая задача Коши получается из задачи Коши для одного уравнения Гамильтона-Якоби-Беллмана с помощью операции дифференцирования этого уравнения и краевого условия по переменной xi. Предполагается, что гамильтониан и начальное условие принадлежат классу непрерывно дифференцируемых функций. Гамильтониан является выпуклым по сопряженной переменной.
В работе предложен новый подход к определению обобщенного решения системы квазилинейных уравнений первого порядка. Обобщенное решение рассматривается в классе многозначных функций с выпуклыми компактными значениями. Доказаны теоремы существования, единственности и устойчивости решения по начальным данным. Получено полугрупповое свойство для введенного обобщенного решения. Показано, что потенциал для обобщенного решения системы квазилинейных уравнений совпадает с единственным минимаксным/вязкостным решением соответствующей задачи Коши для уравнения Гамильтона-Якоби-Беллмана, а в точках дифференцируемости минимаксного решения его градиент совпадает с обобщенным решением исходной задачи Коши. На основе этой связи получены свойства обобщенного решения задачи Коши для системы квазилинейных уравнений. В частности, показано, что введенное обобщенное решение совпадает с супердифференциалом минимаксного решения соответствующей задачи Коши и однозначно почти всюду.
С помощью характеристик уравнения Гамильтона-Якоби-Беллмана описана структура множества точек, в которых минимаксное решение недифференцируемо.
Показано, что свойство обобщенного решения для одного квазилинейного уравнения со скалярной фазовой переменной, введенное О.А. Олейник, может быть распространено на случай рассматриваемой системы квазилинейных уравнений.
система квазилинейных уравнений, уравнение Гамильтона-Якоби-Беллмана, минимаксное/вязкостное решение, метод характеристикWe consider the Cauchy problem for the system of quasi-linear first order equations of a special form. The system is symmetric, the state variable is n-dimensional. The considered Cauchy problem is deduced from the Cauchy problem for the Hamilton-Jacobi-Bellman equation by means of the operation of differentiation of this equation and the boundary condition with respect to the variable xi. It is assumed that the Hamiltonian and the initial condition are continuously differentiable functions. The Hamiltonian is convex with respect to the adjoint variable.
The paper presents a new approach to the definition of the generalized solution of the system of quasi-linear first order equations. The generalized solution belongs to the class of multivalued functions with convex compact values. We prove the existence, uniqueness and stability theorems. The semigroup property for the proposed generalized solution is obtained. It is shown that the potential for generalized solutions of quasi-linear equations coincides with the unique minimax/viscosity solution of the corresponding Cauchy problem for the Hamilton-Jacobi-Bellman equation, and at the points of differentiability of the minimax solution its gradient coincides with the generalized solution of the Cauchy problem. Properties of the generalized solutions of the Cauchy problem for a system of quasi-linear equations are obtained on the basis of this connection. In particular, it is shown that the introduced generalized solution coincides with the superdifferential of the minimax solution of the Cauchy problem and is singlevalued almost everywhere.
The structure of the set of points at which the minimax solution is not differentiable is described by using the characteristics of the Hamilton-Jacobi-Bellman equation.
It is shown that the property of the generalized solution of the quasilinear equation with a scalar state variable proposed by O.A. Oleinik, can be extended to the case of the system of quasi-linear equations under consideration.
-
Предложен подход к получению точных решений неоднородных дифференциальных уравнений в частных производных. Показано, что если правая часть уравнения задает поверхность уровня для решения уравнения, то в рамках этого подхода поиск решений рассматриваемого неоднородного уравнения сводится к решению обыкновенного дифференциального уравнения (ОДУ). В противном случае поиск решений уравнения приводит к решению системы ОДУ. Получение системы ОДУ опирается на наличие в рассматриваемом уравнении первых производных от искомой функции. Для уравнений в частных производных, которые явно не содержат первые производные искомой функции, предложена подстановка, позволяющая получить такие члены в уравнении. Чтобы свести исходное уравнение, содержащее первые производные от искомой функции, к системе ОДУ, рассматривается связанная с ним система двух уравнений в частных производных. Первое уравнение системы содержит в левой части частные производные только первого порядка, выбранные из исходного уравнения, в правой части - произвольную функцию, аргументом которой является искомая функция. Второе уравнение содержит члены исходного уравнения, не вошедшие в первое уравнение системы, и правую часть первого уравнения формируемой системы. Решение исходного уравнения сводится к поиску решения первого уравнения полученной системы уравнений в частных производных, обращающего в тождество второе уравнение системы. Такое решение удается найти, используя расширенную систему уравнений характеристик для первого уравнения и произвол в выборе функции из правой части этого уравнения. Описанный подход применен для получения некоторых точных решений уравнения Пуассона, уравнения Монжа-Ампера и уравнения конвекции-диффузии.
An approach to obtaining exact solutions for nonhomogeneous partial differential equations (PDEs) is suggested. It is shown that if the right-hand side of the equation specifies the level surface of a solution of the equation, then, in this approach, the search of solutions of considered nonhomogeneous differential equations is reduced to solving ordinary differential equation (ODE). Otherwise, searching for solutions of the equation leads to solving the system of ODEs. Obtaining a system of ODEs relies on the presence of the first derivatives of the sought function in the equation under consideration. For PDEs, which do not explicitly contain first derivatives of the sought function, substitution providing such terms in the equation is proposed. In order to reduce the original equation containing the first derivative of the sought function to the system of ODEs, the associated system of two PDEs is considered. The first equation of the system contains in the left-hand side only first order partial derivatives, selected from the original equation, and in the right-hand side it contains an arbitrary function, the argument of which is the sought unknown function. The second equation contains terms of the original equation that are not included in the first equation of the system and the right-hand side of the first equation in the system created. Solving the original equation is reduced to finding the solutions of the first equation of the resulting system of equations, which turns the second equation of the system into identity. It has been possible to find such solution using extended system of equations for characteristics of the first equation and the arbitrariness in the choice of function from the right-hand side of the equation. The described approach is applied to obtain some exact solutions of the Poisson equation, Monge-Ampere equation and convection–diffusion equation.
-
К решению неоднородных уравнений в частных производных с правой частью, заданной на сетке, с. 443-457Предлагается алгоритм получения решения уравнений в частных производных с правой частью, заданной на сетке $\{ (x_{1})_{\mu}, (x_{2})_{\mu}, \ldots, (x_{n})_{\mu}\},$ $(\mu=1,2,\ldots,N)\colon f_{\mu}=f((x_{1})_{\mu}, (x_{2})_{\mu}, \ldots, (x_{n})_{\mu}).$ Здесь $n$ — число независимых переменных в исходном уравнении в частных производных, $N$ — число строк в сетке для правой части, $f=f( x_{1}, x_{2}, \ldots, x_{n})$ — правая часть исходного уравнения. Алгоритм реализует редукцию исходного уравнения к системе обыкновенных дифференциальных уравнений (системе ОДУ) с начальными условиями в каждой точке сетки и включает следующую последовательность действий. Ищется решение исходного уравнения, зависящее от одной независимой переменной. Исходному уравнению ставится в соответствие некоторая система соотношений, содержащая произвольные функции и включающая уравнение в частных производных первого порядка. Для уравнения первого порядка выписывается расширенная система уравнений характеристик. Присоединяя к ней остальные соотношения, содержащие произвольные функции, и требуя, чтобы эти соотношения были первыми интегралами расширенной системы уравнений характеристик, приходим к искомой системе ОДУ, завершая редукцию. Предлагаемый алгоритм позволяет в каждой точке сетки находить решение исходного уравнения в частных производных, удовлетворяющее заданным начальным и краевым условиям. Алгоритм применяется для получения решений уравнения Пуассона и уравнения нестационарной осесимметричной фильтрации в точках сетки, на которой заданы правые части соответствующих уравнений.
уравнения в частных производных, решение начальных и краевых задач, расширенная система уравнений характеристик, редукция уравнений в частных производных к системам ОДУ
On solving non-homogeneous partial differential equations with right-hand side defined on the grid, pp. 443-457An algorithm is proposed for obtaining solutions of partial differential equations with right-hand side defined on the grid $\{ x_{1}^{\mu}, x_{2}^{\mu}, \ldots, x_{n}^{\mu}\},\ (\mu=1,2,\ldots,N)\colon f_{\mu}=f(x_{1}^{\mu}, x_{2}^{\mu}, \ldots, x_{n}^{\mu}).$ Here $n$ is the number of independent variables in the original partial differential equation, $N$ is the number of rows in the grid for the right-hand side, $f=f( x_{1}, x_{2}, \ldots, x_{n})$ is the right-hand of the original equation. The algorithm implements a reduction of the original equation to a system of ordinary differential equations (ODE system) with initial conditions at each grid point and includes the following sequence of actions. We seek a solution to the original equation, depending on one independent variable. The original equation is associated with a certain system of relations containing arbitrary functions and including the partial differential equation of the first order. For an equation of the first order, an extended system of equations of characteristics is written. Adding to it the remaining relations containing arbitrary functions, and demanding that these relations be the first integrals of the extended system of equations of characteristics, we arrive at the desired ODE system, completing the reduction. The proposed algorithm allows at each grid point to find a solution of the original partial differential equation that satisfies the given initial and boundary conditions. The algorithm is used to obtain solutions of the Poisson equation and the equation of unsteady axisymmetric filtering at the points of the grid on which the right-hand sides of the corresponding equations are given.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.