Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'formal stability':
Найдено статей: 3
  1. Рассматривается движение близкой к автономной, периодической по времени гамильтоновой системы с двумя степенями свободы в окрестности тривиального равновесия, устойчивого в линейном приближении. Пусть значения параметров задачи таковы, что в системе реализуется одновременно двойной комбинационный резонанс третьего порядка и резонанс четвертого порядка. Решается вопрос о существовании и устойчивости резонансных периодических решений системы. Исследование проводится на примере задачи о движении динамически симметричного спутника (твердого тела) относительно центра масс в центральном ньютоновском гравитационном поле на слабоэллиптической орбите. В качестве невозмущенных рассматриваются периодические движения спутника, рождающиеся из его стационарных вращений на круговой орбите (гиперболоидальной и конической прецессий), для резонансных значений параметров. Проведена нормализация гамильтонианов возмущенного движения, определены положения равновесия приближенных (модельных) систем, методом Пуанкаре построены соответствующие резонансные периодические движения спутника в окрестности указанных невозмущенных движений, дана их геометрическая интерпретация. Выявлены неустойчивые периодические движения, а также движения, являющиеся устойчивыми для большинства (в смысле меры Лебега) начальных условий и формально устойчивыми.

    The motion of a near-autonomous time-periodic two-degree-of-freedom Hamiltonian system in the vicinity of a linearly stable trivial equilibrium is considered. The values of the problem parameters are supposed to be such that the system implements both a double combinational third-order resonance and a fourth-order resonance. The problem of existence and stability of resonant periodic motions of the system is considered. The study is carried out using as an example the problem of the motion of a dynamically symmetric satellite (a rigid body) relative to the center of mass in the central Newtonian gravitational field in an elliptical orbit with small eccentricity. The satellite's periodic motions generated from its stationary rotations in a circular orbit (hyperboloidal and conical precessions) for the resonant values of the parameters are considered as unperturbed ones. The normalization of the Hamiltonian functions of perturbed motion is performed, and the equilibrium positions of approximate (model) systems are determined. The corresponding resonant periodic motions of the satellite in the vicinity of these unperturbed motions are obtained by the Poincare method, and their geometric interpretation is given. The unstable periodic motions and the motions that are stable for the majority (in the sense of Lebesgue measure) of the initial conditions and formally stable are revealed.

  2. Рассматриваются движения неавтономной, периодической по времени гамильтоновой системы с двумя степенями свободы в окрестности тривиального равновесия, устойчивого в линейном приближении. Предполагается, что в системе реализуется кратный (двойной или тройной) резонанс четвертого порядка. Дан перечень всех возможных наборов характеристических показателей, соответствующих указанным резонансным случаям. Получены пять качественно различных приближенных (модельных) гамильтонианов, отвечающих данным наборам. Для всех рассматриваемых случаев кратных резонансов получены достаточные условия формальной устойчивости тривиального равновесия полной системы, записанные в виде ограничений на коэффициенты форм четвертой степени в нормализованных гамильтонианах возмущенного движения, дана графическая интерпретация этих условий. Показано, что полученные области формальной устойчивости содержатся внутри областей устойчивости каждого имеющегося сильного резонанса, рассматриваемого по отдельности, а резонансные коэффициенты, отвечающие слабым резонансам, должны принимать значения из ограниченного диапазона. Рассмотрены некоторые вопросы о неустойчивости тривиального равновесия системы в случаях кратных резонансов четвертого порядка. Найденные условия формальной устойчивости проверены в точках кратных резонансов четвертого порядка в задаче об устойчивости цилиндрической прецессии динамически симметричного спутника-пластинки в центральном ньютоновском гравитационном поле на эллиптической орбите произвольного эксцентриситета.

    We consider the motion of a nonautonomous time-periodic two-degree-of-freedom Hamiltonian system in the vicinity of a trivial equilibrium being stable in the linear approximation. Fourth-order multiple (double or triple) resonance is assumed to be realized in the system. A list of all possible characteristic exponent sets corresponding to these resonant cases is given. Five qualitatively different approximate (model) Hamiltonian functions corresponding to these sets are obtained. For all cases of multiple resonances under study, sufficient conditions for the formal stability of the trivial equilibrium of the complete system are obtained, written as constraints on the coefficients of forms of the fourth degree in the normalized Hamiltonian functions of perturbed motion. A graphical interpretation of these conditions is given. The regions of formal stability are shown to be contained within the stability regions of each existing strong resonance considered separately, and the resonance coefficients corresponding to the weak resonances should take values from a limited range. Some questions of instability of the trivial equilibrium of the system in cases of multiple fourth-order resonances are considered. The found conditions of formal stability are examined at the points of multiple fourth-order resonances in the stability problem of cylindrical precession of a dynamically symmetric satellite-plate in the central Newtonian gravitational field on an elliptical orbit of arbitrary eccentricity.

  3. Рассмотрена задача оптимального управления движением космического аппарата при коррекции его положения в инерциальной системе координат за счет управляющих моментов, получаемых от ускорений инерционных маховиков бесплатформенной инерциальной навигационной системы. Полученное оптимальное управление обеспечивает плавное изменение ориентации космического аппарата, которое рассматривается как движение по кратчайшей траектории в конфигурационном пространстве специальной ортогональной группы $SO(3)$. Алгоритм управления реализуется с использованием оригинальной процедуры нелинейной сферической интерполяции кватернионов. Основными исполнительными органами ориентации динамического контура управления бесплатформенной инерциальной навигационной системой при решении задачи оптимального управления были выбраны четыре инерционных маховика (три - по осям космического аппарата, четвертый - по биссектрисе). Результаты моделирования верифицируются путем создания анимации корректирующего движения космического аппарата.

    We consider the optimal control problem for spacecraft motion during correction of its position in an inertial coordinate system by means of control torques. Control torques arise from the acceleration of inertial flywheels of a strapdown inertial navigation system. We investigate optimal control, which ensures a smooth change in the spacecraft orientation. This smooth corrective motion is described as the motion along the shortest path in the configuration space of a special orthogonal group $SO(3)$. The shortest path coincides with the large circle arc of the unit hypersphere $S^3$. We also consider a control algorithm using the original procedure of nonlinear spherical interpolation of quaternions. Four inertial flywheels are used as the main executive bodies for orientation of the dynamic control loop of the strapdown inertial navigation system when solving the optimal control problem. Three flywheels are oriented along the axes of the spacecraft. The fourth flywheel is oriented along the bisector. The simulation results are presented. We consider examples for corrective motion in which the spacecraft has zero velocity and acceleration at the beginning and end of the maneuver. We give an animation of the corrective movement of the spacecraft. The proposed formalism can be extended to control the spacecraft motion at an initial angular velocity different from zero, as well as in the orbital coordinate system.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref