Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'geometric parameters':
Найдено статей: 5
  1. В работе изучается хаотическая динамика неголономной модели кельтского камня. Показано, что при определенных значениях параметров, характеризующих геометрические и физические свойства камня, в модели наблюдается странный аттрактор лоренцевского типа, для которого также исследованы этапы его возникновения и разрушения.

    We study chaotic dynamics in a nonholonomic model of celtic stone. We show that, for certain values of parameters characterizing geometrical and physical properties of the stone, a strange Lorenz-like attractor is observed in the model. We study certain steps of appearance and break-down of this attractor.

  2. Исследуются задачи о равновесии трансверсально-изотропной пластины с жесткими включениями. Предполагается, что пластина деформируется в рамках гипотез классической теории упругости. Задачи формулируются в виде минимизации функционала энергии пластины на выпуклом и замкнутом подмножестве пространства Соболева. Установлено, что предельный переход по геометрическому параметру в задачах о равновесии пластины с объемным включением приводит к задаче о пластине с тонким жестким включением. Исследован также случай отслоения тонкого жесткого включения - когда трещина в пластине расположена вдоль одного из берегов включения. В задаче о пластине с отслоившимся тонким включением на трещине задается нелинейное условие непроникания. Это условие имеет вид неравенства (типа Синьорини) и описывает взаимное непроникание противоположных берегов трещины. Для задачи с отслоившимся включением, при достаточной гладкости решения, установлена эквивалентность вариационной и дифференциальной формулировок. Также получены соотношения, описывающие контакт противоположных берегов трещины. Относительно каждой из рассмотренных вариационных задач установлена однозначная разрешимость.

    We study the equilibrium problem of a transversely isotropic plate with rigid inclusions. It is assumed that the plate deforms under hypotheses of classical elasticity. The problems are formulated as the minimization of the plate energy functional on the convex and closed subset of the Sobolev space. It is established that, as the geometric parameter (the size) of the volume inclusion tends to zero, the solutions converge to the solution of an equilibrium problem of a plate with a thin rigid inclusion. Also the case of the delamination of an inclusion is investigated when a crack in the plate is located along one of the inclusion edges. In the problem of a plate with a delaminated inclusion the nonlinear condition of nonpenetration is given. This condition takes the form of a Signorini-type inequality and describes the mutual nonpenetration of the crack edges. For the problem with a delaminated inclusion, the equivalence of variational and differential statements is proved provided a sufficiently smooth solution. For each considered variation problem, unique solvability is established.

  3. Рассматривается движение близкой к автономной, периодической по времени гамильтоновой системы с двумя степенями свободы в окрестности тривиального равновесия, устойчивого в линейном приближении. Пусть значения параметров задачи таковы, что в системе реализуется одновременно двойной комбинационный резонанс третьего порядка и резонанс четвертого порядка. Решается вопрос о существовании и устойчивости резонансных периодических решений системы. Исследование проводится на примере задачи о движении динамически симметричного спутника (твердого тела) относительно центра масс в центральном ньютоновском гравитационном поле на слабоэллиптической орбите. В качестве невозмущенных рассматриваются периодические движения спутника, рождающиеся из его стационарных вращений на круговой орбите (гиперболоидальной и конической прецессий), для резонансных значений параметров. Проведена нормализация гамильтонианов возмущенного движения, определены положения равновесия приближенных (модельных) систем, методом Пуанкаре построены соответствующие резонансные периодические движения спутника в окрестности указанных невозмущенных движений, дана их геометрическая интерпретация. Выявлены неустойчивые периодические движения, а также движения, являющиеся устойчивыми для большинства (в смысле меры Лебега) начальных условий и формально устойчивыми.

    The motion of a near-autonomous time-periodic two-degree-of-freedom Hamiltonian system in the vicinity of a linearly stable trivial equilibrium is considered. The values of the problem parameters are supposed to be such that the system implements both a double combinational third-order resonance and a fourth-order resonance. The problem of existence and stability of resonant periodic motions of the system is considered. The study is carried out using as an example the problem of the motion of a dynamically symmetric satellite (a rigid body) relative to the center of mass in the central Newtonian gravitational field in an elliptical orbit with small eccentricity. The satellite's periodic motions generated from its stationary rotations in a circular orbit (hyperboloidal and conical precessions) for the resonant values of the parameters are considered as unperturbed ones. The normalization of the Hamiltonian functions of perturbed motion is performed, and the equilibrium positions of approximate (model) systems are determined. The corresponding resonant periodic motions of the satellite in the vicinity of these unperturbed motions are obtained by the Poincare method, and their geometric interpretation is given. The unstable periodic motions and the motions that are stable for the majority (in the sense of Lebesgue measure) of the initial conditions and formally stable are revealed.

  4. Разработана нелинейная модель трехслойного течения со свободной границей на основе упрощенных уравнений вязкой жидкости в длинноволновом приближении. Проведено асимптотическое исследование модели, которое показало существование двух различных режимов эволюции течения на малых и больших временах. Получено уравнение, связывающее смещения границ слоев на больших временах, не зависящее от предыстории течения. Модельные результаты используются для изучения поведения глубинной границы под крупномасштабной кольцевой структурой на Луне в зависимости от изменения геометрических физических параметров модели.

    The nonlinear model based on the long-wave approximation of the Navier–Stokes equations is developed to study the free-surface three-layered creeping flow. An asymptotic study of the governing equations reveals two different modes of evolution at a short and long time. The relation between layers’ boundaries is obtained that is independent of a pre-history of the flow. The obtained results are applied to study a behavior of the deep interface beneath the large-scale lunar basin under the variation of geometrical and physical model’s parameters.

  5. Обсуждается проблема корректного использования программных пакетов, в которых реализованы методы решения некорректных задач. К некорректным задачам относится большинство задач обработки экспериментальных данных. При использовании методов решения некорректных задач существует проблема неединственности решения, которая решается путем введения априорной информации. Получение априорной информации возможно разными способами, но количественные оценки предполагают использование дополнительных методов анализа данных. Очевидно, что дополнительные методы не должны быть сложнее и трудозатратнее основного метода обработки данных. На примере использования программы анализа данных электроразведки RES3DINV продемонстрирована роль априорной информации для получения достоверных результатов. Программный пакет RES3DINV применяется для построения модели грунта по измеренным значениям удельного сопротивления методами электроразведки. При использовании реализованного в программном пакете метода инверсии необходимо задавать входные параметры, характеризующие геометрические размеры объекта аномального сопротивления, которые априори, как правило, неизвестны. На модельных объектах продемонстрировано как влияет некорректное задание входных параметров на результат интерпретации данных. Показано, что в качестве способа получения априорной информации можно использовать метод векторного анализа. Этот метод позволяет получать оценки геометрических параметров аномального объекта и не требует больших временных и ресурсных затрат, и может быть использован непосредственно на месте полевых экспериментальных измерений.

    We discuss the problem of proper use of software packages that implement methods for solving ill-posed problems. Most of the problems of processing experimental data belong to ill-posed problems. When using methods for solving ill-posed problems, there is a problem of non-uniqueness of the solution, which is solved by introducing a priori information. Obtaining a priori information is possible in different ways, but quantitative estimates involve the use of additional methods for data analysis. Obviously, additional methods should not be more complicated and labor intensive than the main data processing method. Using the RES3DINV electrical prospecting data analysis software as an example, the role of a priori information for obtaining reliable results is demonstrated. The RES3DINV software is used to build a soil model from the measured values of resistivity using electrical survey’s methods. When using the inversion method implemented in the software package, it is necessary to set the input parameters describing the geometric dimensions of the anomalous resistance object, which are usually unknown a priori. By model objects we demonstrate how the incorrect setting of input parameters affects the result of data interpretation. We show that the vector analysis method can be used as a way to obtain a priori information. This method allows us to obtain estimates of the geometric parameters of an anomalous object, does not involve high time and resource expenses, and can be used directly at the site of field experimental measurements.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref