Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Об обобщенной краевой задаче для управляемой системы с обратной связью и бесконечным запаздыванием, с. 167-185Рассматривается нелокальная граничная задача для управляемой системы с обратной связью, описываемой полулинейным функционально-дифференциальным включением дробного порядка с бесконечным запаздыванием в сепарабельном банаховом пространстве. Приводится общий принцип существования решений задачи в терминах отличия от нуля топологической степени соответствующего векторного поля. Доказывается конкретный пример (теорема 6) реализации этого общего принципа. Доказывается существование оптимального решения поставленной задачи, минимизирующего заданный полунепрерывный снизу функционал качества.
система управления с обратной связью, оптимальное решение, дробное дифференциальное включение, бесконечное запаздывание, мера некомпактности, уплотняющий оператор, неподвижная точка, топологическая степень
On a generalized boundary value problem for a feedback control system with infinite delay, pp. 167-185We consider a non-local boundary value problem for a feedback control system described by a semilinear functional-differential inclusion of fractional order with infinite delay in a separable Banach space. The general principle of existence of solutions to the problem in terms of the difference from zero of the topological degree of the corresponding vector field is given. We prove a concrete example (Theorem 6) of the implementation of this general principle. The existence of an optimal solution to the posed problem is proved, which minimizes the given lower semicontinuous quality functional.
-
Рассматривается уравнение в частных производных первого порядка с эффектом наследственности:
$$ \frac{\partial u(x,t)}{\partial t} + a \frac{\partial u(x,t)}{\partial x} = f ( x, t, u(x,t), u_t(x,\cdot)),$$ $$u_t(x,\cdot) = \{u(x,t+s), -\tau\leqslant s <0\}.$$
Для такого уравнения, с позиций принципа разделения конечномерной и бесконечномерной составляющих состояния, строятся сеточные методы: аналог семейства схем бегущего счета, аналог схемы Кранка-Николсон, метод аппроксимации на середину квадрата. Для учета эффекта наследственности применяются одномерная и двойная кусочно-линейная интерполяции и экстраполяция продолжением. Доказывается, что рассмотренные методы имеют порядки локальной погрешности: соответственно $O(h+\Delta)$, $O(h+\Delta^2)$ и $O(h^2+\Delta^2)$, где $h$ - шаг дискретизации по пространственной переменной, $\Delta$ - шаг дискретизации по временной переменной. Исследуются свойства двойной кусочно-линейной интерполяции. Используя результаты общей теории разностных схем, установлены условия устойчивости предложенных методов. С помощью вложения в общую схему численных методов для функционально-дифференциальных уравнений получены теоремы о порядках сходимости сконструированных алгоритмов. Приведены тестовые примеры по сравнению погрешностей методов.
уравнение переноса, запаздывание, сеточные схемы, интерполяция, экстраполяция, устойчивость, порядок сходимостиWe consider a first-order partial differential equation with heredity effect
$$ \frac{\partial u(x,t)}{\partial t} + a \frac{\partial u(x,t)}{\partial x} = f ( x, t, u(x,t), u_t(x,\cdot)),$$ $$u_t(x,\cdot) = \{u(x,t+s), -\tau\leqslant s <0\}.$$
For such an equation we construct grid methods using the principle of separation of finite-dimensional and infinite-dimensional state components. These grid methods are: analog of running schemes family, analog of Crank-Nicolson scheme, an approximation method to the middle of the square. The one-dimensional and double piecewise linear interpolation and the extrapolation by continuation are applied in order to account the effect of heredity. It is shown that the considered methods have orders of a local error: $O (h +\Delta) $, $O (h +\Delta^2) $ and $O (h^2 +\Delta^2)$ respectively, where $h$ is the spatial discretization interval, $\Delta$ is the time discretization interval. Properties of double piecewise linear interpolation are investigated. Using the results of the general theory of differential schemes, stability conditions of the proposed methods are established. Including them in the general scheme of numerical methods for the functional-differential equations, theorems of orders of proposed algorithms convergence are received. Test examples comparing errors of methods are given.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.