Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'information sets':
Найдено статей: 15
  1. Работа посвящена исследованию равновесия по Нэшу в неантагонистической детерминированной дифференциальной игре двух лиц в классе рандомизированных стратегий. Предполагается, что игроки информированы об управлении своего партнера, реализовавшегося к текущему времени. Поэтому игра формализуется в классе рандомизированных квазистратегий. В работе получена характеризация множества выигрышей (пар ожидаемых выигрышей игроков) в ситуациях равновесия по Нэшу с использованием вспомогательных антагонистических игр. Показано, что множество выигрышей в ситуациях рандомизированного равновесия по Нэшу является выпуклой оболочкой множества выигрышей в классе детерминированных стратегий. Приведен пример, показывающий дополнительные возможности, которые возникают при переходе к рандомизированным стратегиям.

    The paper is concerned with the randomized Nash equilibrium for a nonzero-sum deterministic differential game of two players. We assume that each player is informed about the control of the partner realized up to the current moment. Therefore, the game is formalized in the class of randomized non-anticipative strategies. The main result of the paper is the characterization of a set of Nash values considered as pairs of expected players' outcomes. The characterization involves the value functions of the auxiliary zero-sum games. As a corollary we get that the set of Nash values in the case when the players use randomized strategies is a convex hull of the set of Nash values in the class of deterministic strategies. Additionally, we present an example showing that the randomized strategies can enhance the outcome of the players.

  2. Рассматриваются две задачи нелинейного гарантированного оценивания фазовых состояний динамических систем. Предполагается, что неизвестные измеримые по $t$ возмущения линейно входят в уравнение движения и аддитивно — в уравнения измерения. Эти возмущения стеснены нелинейными интегральными функционалами, один из которых является аналогом функционала обобщенной работы. Исследуемая задача состоит в построении информационных множеств по данным измерения, содержащих истинное положение траектории. Используется подход динамического программирования. Если для первого функционала требуется решить нелинейное уравнение в частных производных первого порядка, что не всегда возможно, то для функционала обобщенной работы достаточно найти решение линейного уравнения Ляпунова первого порядка, что существенно упрощает задачу. Тем не менее, даже в этом случае приходится налагать дополнительные условия на параметры системы для того, чтобы траектория системы, соответствующая наблюдаемому сигналу, существовала. Если уравнение движения линейно по фазовой переменной, то многие предположения выполняются автоматически. Для этого случая обсуждается вопрос о взаимной оценке сверху и снизу информационных множеств по включению для разных функционалов. В заключение рассмотрен наиболее прозрачный линейно-квадратичный случай. Изложение иллюстрируется примерами.

    Two problems of nonlinear guaranteed estimation for states of dynamical systems are considered. It is supposed that unknown measurable in $t$ disturbances are linearly included in the equation of motion and are additive in the measurement equations. These disturbances are constrained by nonlinear integral functionals, one of which is analog of functional of the generalized work. The studied problem consists in creation of the information sets according to measurement data containing the true position of the trajectory. The dynamic programming approach is used. If the first functional requires solving a nonlinear equation in partial derivatives of the first order which is not always possible, then for functional of the generalized work it is enough to find a solution of the linear Lyapunov equation of the first order that significantly simplifies the problem. Nevertheless, even in this case it is necessary to impose additional conditions on the system parameters in order for the system trajectory of the observed signal to exist. If the motion equation is linear in state variable, then many assumptions are carried out automatically. For this case the issue of mutual approximation of information sets via inclusion for different functionals is discussed. In conclusion, the most transparent linear quadratic case is considered. The statement is illustrated by examples.

  3. Различные задачи управления пучками траекторий составляют важный объект изучения в современной математической теории управления. Такие задачи возникают, например, при изучении движения потока заряженных частиц, а также при наличии неполной информации о начальном состоянии управляемой системы. В настоящей статье для нелинейного управляемого объекта весьма общего вида на фиксированном отрезке времени $[0,T]$ рассматривается задача управления пучками траекторий при неодноточечном начальном множестве. На множестве достижимости в момент $T>0$ изучается задача максимизации заданной непрерывной функции. Эту задачу можно интерпретировать как задачу о разбросе траекторий управляемого объекта. Соответствующий максимум зависит от выбранного допустимого управления $u(\cdot )$. В статье обосновывается существование минимума на множестве допустимых управлений от этого максимума.

    Various problems of control of trajectory bundles constitute an important object of study in modern mathematical control theory. Such problems arise, for example, in studying the motion of a flow of charged particles, and also in the presence of incomplete information about the initial state of the controlled system. In the present article, for a nonlinear controlled object of a quite general form on a fixed time interval $[0,T]$, the problem of control of trajectory bundles with a non-single-point initial set is considered. On the reachable set at the moment $T>0$, the problem of maximization of a given continuous function is studied. This problem can be interpreted as a problem on the spread of trajectories of the controlled object. The corresponding maximum depends on the chosen admissible control $u(\cdot )$. In the article, the existence of a minimum on the set of admissible controls from this maximum is substantiated.

  4. Теория управления - активно развивающийся в настоящее время раздел современной математики. Класс задач, изучаемый в рамках этой теории, достаточно обширен и включает как вопросы, связанные с существованием решений, так и вопросы, связанные с эффективными способами построения управляющих воздействий. Один из подходов к решению задач управления при неполной информации был предложен в основополагающей статье Ю.С. Осипова, опубликованной в журнале «Успехи математических наук» в 2006 году. В дальнейшем этот подход, названный методом пакетов программ, получил развитие, в частности, в статьях, цитированных в настоящей работе. Указанный подход основан на подходящей модификации известного в теории позиционных дифференциальных игр метода неупреждающих стратегий (квазистратегий) для решения задач управления при неизвестном начальном состоянии. Как известно, квазистратегии, отражающие свойства вольтерровости программных реализаций управлений с обратной связью на соответствующие программные возмущения, ориентированы на исследование задач с известным начальным состоянием при наличии неизвестных динамических возмущений. В стандартных задачах управления с неполной информацией динамические возмущения, как правило, отсутствуют, а неполнота информации обусловлена дефицитом информации о начальном состоянии системы. Аналогом свойств неупреждаемости для задач с неизвестными начальными состояниями и стали пакеты программ. Следует отметить, что во всех предыдущих исследованиях, связанных с методом пакетов программ, рассматривались задачи наведения на одно-единственное целевое множество. В настоящей работе для линейной стационарной управляемой динамической системы рассмотрена задача гарантированного наведения на семейство целевых множеств в случае неполной информации о начальном состоянии. Установлен критерий разрешимости этой задачи, основанный на методе пакетов программ, и приведен иллюстрирующий пример.

    Control theory is a section of modern mathematics being actively developed at present time. The class of problems investigated within the framework of this theory is quite extensive and includes issues related to the existence of solutions as well as issues related to the effective methods for constructing controls. One of the approaches to solving control problems under lack of information was suggested by Yu.S. Osipov in the fundamental paper published in the Russian Mathematical Surveys in 2006. Later, this approach, called the method of program packages, was developed, in particular, in the articles cited in this paper. This approach is based on a suitable modification of the method of non-anticipatory strategies (quasi-strategies) for solving control problems with unknown initial states. As is known, quasi-strategies reflecting the Volterra properties of program realizations of closed-loop controls in corresponding program disturbances are oriented to the investigation of problems with known initial states under the presence of unknown dynamical disturbances. Such disturbances are usually absent in standard control problems with incomplete information and incompleteness of information is due to a lack of information about the initial state of the system. So, program packages became an analogue of the properties of nonanticipativeness for problems with unknown initial states. It should be noted that in all previous works related to the method of program packages, the guidance problems to one single target set were considered. In the present paper the guaranteed guidance problem to a collection of target sets under incomplete information about the initial state is considered for a linear autonomous control dynamical system. The criterion for the solvability of that problem is established. It is based on the method of program packages. An illustrative example is given.

  5. Рассматривается управляемая механическая система с сухим трением и позиционным импульсным или позиционным разрывным управлением. Она может быть представлена в виде уравнений Лагранжа второго рода:

    A(t,q)d2q/dt2=g(t,q,dq/dt)+QA(t,q,dq/dt)+QT(t,q,dq/dt)+u, tI=[t0,t0+T]. (1)

    Целью управления является  движение системы по  множеству S={(t,q,dq/dt)∈I×Rn×Rn: σ(t,q,dq/dt)=0} (задача стабилизации) или в окрестности этого множества (задача сближения). Первая задача решается с использованием  позиционного управления релейного типа с ограниченными ресурсами, для которых режим декомпозиции является устойчивым скользящим режимом системы (1). При недостаточности ресурсов обычного разрывного управления движение системы в окрестности  множества S происходит при помощи высокочастотных импульсных воздействий на нее в дискретные моменты времени в импульсно-скользящем режиме, равномерный предел которого (идеальный импульсно-скользящий режим) совпадает с режимом декомпозиции. Отличительной особенностью поставленных задач является наличие в системе (1) сил сухого трения, которые, вообще говоря, могут рассматриваться как некоторые неуправляемые разрывные или многозначные возмущения.

    Основные понятия даны во введении статьи. В первом разделе показана связь между идеальными импульсно-скользящими режимами включения

    A(t,x)F(t,x)+u,

    где u - позиционное импульсное управление, и скользящими режимами системы

    A(t,x)F(t,x)+B(t,x)ũ(t,x)

    с позиционным разрывным управлением. Второй раздел посвящен системам вида (1). В третьем разделе рассматривается важное для приложений целевое множество S системы (1), которое определяется векторной функцией σ(t,q,dq/dt)=dq/dt-φ(t,q). Для последнего случая использованы  более простые и содержательные условия, гарантирующие существование скользящих режимов для системы с позиционным разрывным управлением. В заключении рассмотрен пример.

    We consider a controlled mechanical system with dry friction and positional pulse or positional discontinuous control. It can be presented in a form of Lagrange equations of the second kind

    A(t,q)d2q/dt2=g(t,q,dq/dt)+QA(t,q,dq/dt)+QT(t,q,dq/dt)+u, tI=[t0,t0+T]. (1)

    The goal of the control is the motion of the system (1) in set S={(t,q,dq/dt)∈I×Rn×Rnσ(t,q,dq/dt)=0} (problem of stabilization) or in the neighborhood of set S (approach problem). The first problem is solved with discontinuous positional control of relay type with limited resources, for which a decomposition mode is a stable sliding mode of system (1). In case of insufficiency of resources of discontinuous control the motion of the controlled system in the neighborhood of set S can be implemented under high-frequency impacts on the system in discrete time moments in the pulse-sliding mode, the uniform limit of which (an ideal pulse-sliding mode) is equal to the decomposition mode. The distinctive feature of the assigned problems is dry friction in the system (1), and said dry fiction, generally speaking, can be considered as uncontrollable discontinuous or multivalued perturbations. 

    Main definitions are given in the introduction of the article. In the first section the connection between ideal pulse-sliding modes of inclusion

    A(t,x)F(t,x)+u,

    where u is a positional pulse control, and sliding modes of system

    A(t,x)F(t,x)+B(t,x)ũ(t,x)

    with a positional discontinuous control is considered. The second section is devoted to systems of type (1). In the third section we consider set S, which is important in relation to applications and is defined by the vector function σ(t,q,dq/dt)=dq/dt-φ(t,q). For the last case more simple and informative conditions of the existence of sliding modes for a system with discontinuous controls were used. An example was considered in conclusion.

  6. В конечномерном евклидовом пространстве рассматривается задача преследования группой преследователей двух убегающих, описываемая линейной системой с простой матрицей в заданной временно́й шкале. Предполагается, что убегающие используют одно и то же управление. Преследователи действуют согласно квазистратегиям на основе информации о начальных позициях и предыстории управления убегающих. Множество допустимых управлений для каждого из участников представляет собой шар единичного радиуса с центром в начале координат, терминальные множества — начало координат. Целью группы преследователей является поимка двух убегающих. При исследовании в качестве базового используется метод разрешающих функций, позволяющий получить достаточные условия разрешимости задачи сближения за некоторое гарантированное время. В терминах начальных позиций и параметров игры получено достаточное условие поимки убегающих.

    In a finite-dimensional Euclidean space, we consider the problem of pursuit of two evaders by a group of pursuers, described by a linear system with a simple matrix on a given time scale. It is assumed that the evaders use the same control. The pursuers employ quasistrategies based on information about the initial positions and control history of the evaders. The set of admissible controls for each participant is a ball of unit radius centered at the origin, and the terminal sets are the origin. The goal of the group of pursuers is to capture the two evaders. In the study, we use the method of resolving functions as a base one, which allows us to obtain sufficient conditions for the solvability of the approach problem in a certain guaranteed time. In terms of the initial positions and parameters of the game, a sufficient condition for capturing the evaders is obtained.

  7. Рассматривается динамическая управляемая система с помехой. Задано множество моментов коррекций управления. Рассматривается задача удержания фазовой точки в заданном семействе множеств в моменты коррекций. Допускается мгновенное изменение позиции. Найдены необходимые и достаточные условия возможности удержания. В качестве примера рассматривается дискретная линейная задача управления с помехой и одномерной целью. Условие одномерности цели означает, что модуль значения заданной линейной функции от фазовых переменных в фиксированный момент окончания процесса управления не должен превосходить заданного числа. Для этой задачи в явном виде найдены необходимые и достаточные условия, выполнение которых гарантирует существование допустимого управления, которое обеспечивает достижение цели при любой допустимой реализации помехи. Это управление построено в явном виде, причем информация о реализовавшемся значении помехи не используется. Построена помеха, которая гарантирует не достижение цели при любом допустимом управлении из начального состояния, не удовлетворяющего найденным условиям.

    We consider a dynamic control system under interference. A set of correction momenta of the controls is given. The problem of phase point retention in a given collection of sets at correction momenta is considered. Instantaneous change of a position is admissible. Necessary and sufficient conditions for the possibility of retention are found. As an example, we consider a discrete linear control problem under interference and with the one-dimensional aim. The condition of one-dimensionality of the aim means that the modulus of the value of a given linear function of the phase variables at a fixed moment of the control process end should not be more than a given number. For this problem, necessary and sufficient conditions are found in an explicit form, the fulfillment of which guarantees the existence of an admissible control that ensures the achievement of the aim for any admissible realization of the interference. This control is constructed in an explicit form, and information about the realized value of the interference is not used. We constructed the interference which guarantees that the aim will not be reached at any admissible control from the initial state that does not satisfy the obtained conditions.

  8. В конечномерном евклидовом пространстве рассматривается задача преследования группой преследователей двух убегающих, описываемая системой вида $$ \dot z_{ij} = u_i - v,\quad u_i,v \in V. $$ Предполагается, что убегающие используют одно и то же управление. Преследователи используют контрстратегии на основе информации о начальных позициях и предыстории управления убегающих. Множество допустимых управлений $V$ — шар единичного радиуса с центром в начале координат, целевые множества — начало координат. Целью группы преследователей является поимка хотя бы одного убегающего двумя преследователями. В терминах начальных позиций и параметров игры получено достаточное условие поимки. При исследовании в качестве базового используется метод разрешающих функций, позволяющий получить достаточные условия разрешимости задачи сближения за некоторое гарантированное время.

    In a finite-dimensional Euclidean space, the problem of pursuit of two evaders by a group of pursuers described by a system of the form $$ \dot z_{ij} = u_i - v,\quad u_i,v \in V, $$ is considered. It is assumed that all evaders use the same control. The pursuers use counterstrategies based on information about the initial positions and control history of the evaders. The set of admissible controls $V$ is a unit ball centered at zero, target sets are the origin of coordinates. The goal of the pursuers' group is to capture at least one evader by two pursuers. In terms of initial positions and game parameters a sufficient condition for the capture is obtained. In the study, the method of resolving functions is used as a basic one, which allows obtaining sufficient conditions for the solvability of the approach problem in some guaranteed time.

  9. В задачах принятия решений, когда лицо, принимающее решение, получает информацию о возможном выигрыше в результате выбора стратегии в виде нечеткого числа, возникает проблема сравнения нечетких чисел. При выборе того или иного метода сравнения нечетких чисел нужно исходить из специфики задачи. Предлагаемый в статье подход сравнения нечетких чисел основан на сравнении множеств уровня. Эти множества уровня являются отрезками. При сравнении отрезков, в которых может находиться величина выигрыша лица, принимающего решение, берется один из критериев, применяемых в задачах принятия решения при наличии неопределенности (критерии Вальда, Сэвиджа, Гурвица и другие). Результаты сравнения по множествам уровня усредняются. Нечеткие числа сравниваются с помощью этих средних значений. Дана геометрическая интерпретация полученного результата, которая сводит сравнение нечетких чисел к сравнению величин площадей соответствующих фигур, образованных графиками функций принадлежности нечетких чисел. В качестве примера рассмотрены нечеткие числа с колоколообразными и трапецеидальными функциями принадлежности.

    Ukhobotov V.I., Mihailova E.S.
    Comparison of fuzzy numbers in decision-making problems, pp. 87-94

    The paper deals with decision-making problems, when a decision maker receives information about possible pay-off as a result of a strategy selection. This information can be given as a fuzzy number and the problem of its comparison appears. A specific character of the problem is a main factor to choose the method of the fuzzy numbers comparison. In this paper an approach of comparing fuzzy numbers has been proposed, it’s based on the comparison of $\alpha$-cuts. These $\alpha$-cuts are segments. During the comparison of the segments, each segment can contain a merit value; one of the decision-making criteria is chosen (Wald's maximin model, Regret theory models, Routh-Hurwitz stability criterion etc.). The results of the comparison are averaged out. Fuzzy numbers are compared according to these mean values. According to geometrical interpretation which has been given, the comparison of fuzzy numbers is equivalent to the comparison of figures' areas. These areas are formed by graphics of membership functions of the fuzzy numbers. As an example trapezoidal and bell-shaped fuzzy numbers are examined.

  10. В конечномерном евклидовом пространстве $\mathbb R^k$ рассматривается линейная задача преследования группой преследователей одного убегающего, описываемая в заданной временной шкале $\mathbb{T}$ уравнениями вида \begin{gather*} z_i^{\Delta} = a z_i + u_i - v, \end{gather*} где $z_i^{\Delta}$ — $\Delta$-производная функций $z_i$ во временной шкале $\mathbb{T}$, $a$ — произвольное число, не равное нулю. Множество допустимых управлений для каждого участника представляет собой шар единичного радиуса с центром в начале координат, терминальные множества — заданные выпуклые компакты в $\mathbb R^k$. Преследователи действуют согласно контрстратегиям на основе информации о начальных позициях и предыстории управления убегающего. В терминах начальных позиций и параметров игры получено достаточное условие поимки. Для случая задания временной шкалы в виде $\mathbb T = \{\tau k \mid k \in \mathbb Z,\ \tau \in \mathbb R,\ \tau >0\}$ найдены достаточные условия разрешимости задач преследования и уклонения. При исследовании в обоих случаях в качестве базового используется метод разрешающих функций.

    Mozhegova E.S.
    On a group pursuit problem on time scales, pp. 130-140

    In a finite-dimensional Euclidean space $\mathbb R^k$, we consider a linear problem of pursuit of one evader by a group of pursuers, which is described on the given time scale $\mathbb{T}$ by equations of the form \begin{gather*} z_i^{\Delta} = a z_i + u_i - v, \end{gather*} where $z_i^{\Delta}$ is the $\Delta$-derivative of the functions $z_i$ on the time scale $\mathbb{T}$, $a$ is an arbitrary number not equal to zero. The set of admissible controls for each participant is a unit ball centered at the origin, the terminal sets are given convex compact sets in $\mathbb R^k$. The pursuers act according to the counter-strategies based on the information about the initial positions and the evader control history. In terms of initial positions and game parameters, a sufficient capture condition has been obtained. For the case of setting the time scale in the form $\mathbb T = \{ \tau k \mid k \in \mathbb Z,\ \tau \in \mathbb R,\ \tau >0\}$ sufficient pursuit and evasion problems solvability conditions have been found. In the study, in both cases, the resolving function method is used as basic one.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref