Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'lumped delay':
Найдено статей: 2
  1. Рассматривается управляемая система, заданная линейной стационарной системой дифференциальных уравнений с сосредоточенными и распределенными запаздываниями по состоянию. Управление в системе строится в виде линейной статической обратной связи по выходу с сосредоточенными и распределенными запаздываниями в тех же узлах. Исследуется задача назначения конечного спектра для замкнутой системы: требуется построить коэффициенты обратной связи таким образом, чтобы характеристическая функция замкнутой системы обращалась в полином с произвольными наперед заданными коэффициентами. Получены условия на коэффициенты системы, при которых найден критерий разрешимости данной задачи назначения конечного спектра. Получены следствия о стабилизации системы с несколькими запаздываниями посредством линейной статической обратной связи по выходу с запаздываниями.

    We consider a control system defined by a linear time-invariant system of differential equations with lumped and distributed delays in the state variable. We construct a controller for the system as linear static output feedback with lumped and distributed delays in the same nodes. We study a finite spectrum assignment problem for the closed-loop system. One needs to construct gain coefficients such that the characteristic function of the closed-loop system becomes a polynomial with arbitrary preassigned coefficients. We obtain conditions on coefficients of the system under which the criterion was found for solvability of the finite spectrum assignment problem. Corollaries on stabilization by linear static output feedback with several delays are obtained for the closed-loop system.

  2. Рассматривается линейная система управления, заданная стационарным дифференциальным уравнением с одним сосредоточенным и одним распределенным запаздыванием. В системе на вход подается линейная комбинация из $m$ сигналов и их производных до порядка $n-p$ включительно, а выход представляет собой $k$-мерный вектор линейных комбинаций состояния и его производных до порядка не более $p-1$. Для этой системы исследуется задача управления спектром с помощью линейной статической обратной связи по выходу с сосредоточенным и распределенным запаздываниями. Получены необходимые и достаточные условия разрешимости задачи произвольного размещения спектра посредством статической обратной связи по выходу, имеющей тот же вид, что и система. Получены следствия о стабилизации системы.

    A linear control system defined by a stationary differential equation with one lumped and one distributed delay is considered. In the system, the input is a linear combination of $m$ variables and their derivatives of order not more than $n-p$ and the output is a $k$-dimensional vector of linear combinations of the state and its derivatives of order not more than $p-1$. For this system, a spectrum assignment problem by linear static output feedback with delays is studied. Necessary and sufficient conditions are obtained for solvability of the arbitrary spectrum assignment problem by static output feedback controller of the same type as the system. Corollaries on stabilization of the system are obtained.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref