Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'mapping':
Найдено статей: 51
  1. Для дифференциальной игры многих лиц найдены условия того, что заданное многозначное отображение в каждой точке есть множество выигрышей в ситуациях равновесия по Нэшу. Данное условие выписано в инфинитезимальной форме. Также найдены достаточные условия, при которых набор непрерывных функций обеспечивает равновесие по Нэшу. Данное условие обобщает метод, основанный на системе уравнений типа Гамильтона–Якоби.

    We study Nash equilibrium for a differential game with many players. The condition on a multivalued map under which any value of this map is a set of Nash equilibrium payoffs is obtained. This condition is written in infinitesimal form. The sufficient condition for the given complex of continuous functions to provide a Nash equilibrium is obtained. This condition is a generalization of the method based on system of Hamilton–Jacobi equations.

  2. Рассматривается вопрос о существовании рекуррентных и почти рекуррентных сечений многозначных отображений R ∋ tF(t) ∈ compU с непустыми компактными образами F(t) в полном метрическом пространстве U. На множестве compU вводится метрика Хаусдорфа dist. Рекуррентные и почти рекуррентные многозначные отображения определяются как функции со значениями в метрическом пространстве (compU, dist). Доказано существование рекуррентных (почти рекуррентных) сечений многозначных рекуррентных (соответственно, почти рекуррентных) равномерно абсолютно непрерывных отображений. Рассматриваются также отображения R ∋ t → F(t), образы которых состоят из конечного числа точек (зависящего от t). Доказано, что если такое отображение почти рекуррентно, то у него существует почти рекуррентное сечение. Многозначное рекуррентное отображение, образы F(t) которого для всех t ∈ R состоят не более чем из n точек (где n ∈ N), имеет рекуррентное сечение. Если образы многозначного рекуррентного (почти рекуррентного) отображения tF(t) при всех t ∈ R состоят из n точек, то все n непрерывных сечений отображения F рекуррентны (почти рекуррентны).

    In the paper, we consider the problem of existence of recurrent and almost recurrent selections of multivalued mappings R ∋ tF(t) ∈ compU with nonempty compact sets F(t) in a complete metric space U. The set compU is equipped with the Hausdorff metric dist. Recurrent and almost recurrent multivalued maps are defined as the functions with values in the metric space (compU, dist). It is proved that there are recurrent (almost recurrent) selections of multivalued recurrent (almost recurrent) uniformly absolutely continuous maps. We also consider mappings R ∋ tF(t) with the sets F(t) consisting of a finite number of points (the number depends on the t ∈ R). We prove that if such a map is almost recurrent, then it has an almost recurrent selection. A multivalued recurrent mapping tF(t) with sets F(t) consisting of at most n points (where n ∈ N) has a recurrent selection. If the sets F(t) of a multivalued recurrent (almost recurrent) mapping tF(t) consist of n points for all t ∈ R, then all n continuous selections of the map F are recurrent (almost recurrent).

  3. Рассматривается модель хаотического движения пластинки в вязкой жидкости, описываемая колебательной системой трех обыкновенных дифференциальных уравнений с квадратичной нелинейностью. В ходе бифуркационного исследования особых точек системы построены карты типов особых точек и найдено уравнение поверхности в пространстве параметров диссипации и циркуляции, на которой происходит бифуркация Андронова-Хопфа рождения предельного цикла. При дальнейшем изменении параметров вблизи поверхности Андронова-Хопфа найдены каскады бифуркаций удвоения периода цикла Фейгенбаума и субгармонические каскады Шарковского, заканчивающиеся рождением цикла периода три. Получены выражения для седловых чисел седлоузла и двух седлофокусов и построены их графики в пространстве параметров. Показано, что в системе реализуются гомоклинические каскады бифуркаций при разрушении гомоклинических траекторий седлофокусов. Существование гомоклинических траекторий седлофокусов доказано численно-аналитическим методом. Графики старшего показателя Ляпунова и бифуркационные диаграммы показывают, что при изменении коэффициентов диссипации система в несколько этапов переходит к хаосу.

    We consider the model of chaotic motion of a plate in a viscous fluid, described by an oscillatory system of three ordinary differential equations with a quadratic nonlinearity. In the course of the bifurcation study of singular points of the system, maps of the types of singular points are constructed and a surface equation is found in the space of dissipation and circulation parameters on which the Andronov-Hopf bifurcation of the limit cycle creation takes place. With a further change in the parameters near the Andronov-Hopf surface, cascades of the period doubling doubling of the Feigenbaum cycle and the Sharkovsky subharmonic cascades, ending with the creation of a cycle of period three, are found. Expressions are obtained for saddle numbers of the saddle-node and two saddle-foci and their plots are plotted in the parameter space. It is shown that homoclinic cascades of bifurcations are realized in the system with the destruction of homoclinic trajectories of saddle-foci. The existence of homoclinic trajectories of saddle-foci is proved by a numerical-analytical method. The graphs of the largest Lyapunov exponent and the bifurcation diagrams show that when the dissipation coefficients change, the system switches to chaos in several stages.

  4. Пусть $T\in C^{2+\varepsilon}(S^{1}\setminus \{x_{b}\})$, $\varepsilon>0$, — гомеоморфизм окружности с одной точкой излома $x_{b}$, в которой $T'(x)$ имеет разрыв первого рода и обе односторонние производные в точке $x_{b}$ строго положительные, и иррациональным числом вращения $\rho _{T}$. Предположим, что разложение числа вращения $\rho _{T}$ в непрерывную дробь, начиная с некоторого номера, совпадает с золотым сечением, т.е. $\rho _{T}=[m_{1},m_{2},\dots,m_{l},\,m_{l+1},\ldots],…,m_{s}=1$, $s> l>0$. Поскольку число вращения иррациональное, отображение $T$ является строго эргодическим, т.е. обладает единственной вероятностной инвариантной мерой $\mu_{T}$. В работе А.А. Джалилова и К.М. Ханина доказано, что вероятностная инвариантная мера $\mu_{G}$ любого гомеоморфизма окружности $G\in C^{2+\varepsilon}(S^{1}\setminus \{x_{b}\})$, $\varepsilon>0$, с одной точкой излома $ x_{b}$ и иррациональным числом вращения $\rho _{G}$ является сингулярной относительно меры Лебега $\lambda$ на окружности, т.е. существует измеримое подмножество $A \subset S^{1}$ такое, что $\mu_{G}(A)=1$ и $\lambda(A)=0$. Мы построим термодинамический формализм для гомеоморфизмов $T_{b}\in C^{2+\varepsilon}(S^{1}\setminus \{x_{b}\})$, $\varepsilon>0$, с одним изломом в точке $x_{b}$ и числом вращения, равным золотому сечению, т.е. $\rho _{T}:=\frac{\sqrt{5}-1}{2}$. Существенно используя построенный термодинамический формализм, мы изучили показатели сингулярности инвариантной меры $\mu_{T}$ гомеоморфизма $T$.

    Let $T \in C^{2+ \varepsilon} (S^{1} \setminus \{x_{b} \})$, $\varepsilon> 0 $, be a circle homeomorphism with one break point $x_{b}$, at which $ T'(x) $ has a discontinuity of the first kind and both one-sided derivatives at the point $x_{b} $ are strictly positive. Assume that the rotation number $\rho_{T}$ is irrational and its decomposition into a continued fraction beginning from a certain place coincides with the golden mean, i.e., $\rho_{T}=[m_{1}, m_{2}, \ldots, m_{l}, \, m_{l + 1}, \ldots] $, $ m_{s} = 1$, $s> l> 0$. Since the rotation number is irrational, the map $ T $ is strictly ergodic, that is, possesses a unique probability invariant measure $\mu_{T}$. A.A. Dzhalilov and K.M. Khanin proved that the probability invariant measure $ \mu_{G} $ of any circle homeomorphism $ G \in C^{2+ \varepsilon} (S^{1} \setminus \{x_{b} \})$, $\varepsilon> 0$, with one break point $ x_{b} $ and the irrational rotation number $ \rho_{G} $ is singular with respect to the Lebesgue measure $ \lambda $ on the circle, i.e., there is a measurable subset of $ A \subset S^{1} $ such that $ \mu_ {G} (A) = 1 $ and $ \lambda (A) = 0$. We will construct a thermodynamic formalism for homeomorphisms $ T_{b} \in C^{2+ \varepsilon} (S^{1} \setminus \{x_{b} \})$, $\varepsilon> 0 $, with one break at the point $ x_{b} $ and rotation number equal to the golden mean, i.e., $ \rho_{T}:= \frac {\sqrt{5} -1}{2} $. Using the constructed thermodynamic formalism, we study the exponents of singularity of the invariant measure $ \mu_{T} $ of homeomorphism $ T $.

  5. Пусть $T_{\rho}$ — иррациональный поворот на единичной окружности $S^{1}\simeq [0,1)$. Рассмотрим последовательность $\{\mathcal{P}_{n}\}$ возрастающих разбиений на $S^{1}$. Определим время попадания $N_{n}(\mathcal{P}_n;x,y):= \inf \{ j\geq 1\mid T^{j}_{\rho}(y) \in P_{n}(x)\}$, где $P_{n}(x)$ — элемент разбиения $\mathcal{P}_{n}$, содержащий точку $x$. Д. Ким и Б. Сео [9] доказали, что время попадания $K_n(\mathcal{Q}_n;x,y):= \frac{\log N_n(\mathcal{Q}_n;x,y)}{n}$ почти всюду (по мере Лебега) сходится к $\log2$, где последовательность разбиений $\{\mathcal{Q}_n\}$ порождена хаотическим отображением $f_{2}(x):=2x \bmod 1$. Хорошо известно, что отображение $f_{2}$ имеет положительную энтропию $\log2$. Возникает естественный вопрос о том, что если последовательность разбиений $\{\mathcal{P}_n\}$ порождена отображением с нулевой энтропией. В настоящей работе мы изучаем поведение $K_n(\tau_n;x,y)$ с последовательностью смешанных разбиений ${\tau_{n}}$ таких, что $\mathcal{Q}_{n}\cap [0,\frac{1}{2}]$ порождена отображением $f_{2}$, а $ \mathcal{D}_{n}\cap [\frac{1}{2},1]$ порождена иррациональным поворотом $T_{\rho}$. Доказано, что $K_n(\tau_n;x,y)$ почти всюду (по мере Лебега) сходится к кусочно-постоянной функции с двумя значениями. Также показано, что существуют некоторые иррациональные повороты, демонстрирующие различное поведение.

    Dzhalilov A.A., Khomidov M.K.
    Hitting functions for mixed partitions, pp. 197-211

    Let $T_{\rho}$ be an irrational rotation on a unit circle $S^{1}\simeq [0,1)$. Consider the sequence $\{\mathcal{P}_{n}\}$ of increasing partitions on $S^{1}$. Define the hitting times $N_{n}(\mathcal{P}_n;x,y):= \inf\{j\geq 1\mid T^{j}_{\rho}(y)\in P_{n}(x)\}$, where $P_{n}(x)$ is an element of $\mathcal{P}_{n}$ containing $x$. D. Kim and B. Seo in [9] proved that the rescaled hitting times $K_n(\mathcal{Q}_n;x,y):= \frac{\log N_n(\mathcal{Q}_n;x,y)}{n}$ a.e. (with respect to the Lebesgue measure) converge to $\log2$, where the sequence of partitions $\{\mathcal{Q}_n\}$ is associated with chaotic map $f_{2}(x):=2x \bmod 1$. The map $f_{2}(x)$ has positive entropy $\log2$. A natural question is what if the sequence of partitions $\{\mathcal{P}_n\}$ is associated with a map with zero entropy. In present work we study the behavior of $K_n(\tau_n;x,y)$ with the sequence of mixed partitions $\{\tau_{n}\}$ such that $ \mathcal{P}_{n}\cap [0,\frac{1}{2}]$ is associated with map $f_{2}$ and $\mathcal{D}_{n}\cap [\frac{1}{2},1]$ is associated with irrational rotation $T_{\rho}$. It is proved that $K_n(\tau_n;x,y)$ a.e. converges to a piecewise constant function with two values. Also, it is shown that there are some irrational rotations that exhibit different behavior.

  6. Рассмотрен класс почти периодических по Вейлю функций, для которых множество ε-почти периодов, определяемых с помощью псевдометрики Вейля, относительно плотно при всех ε > 0: Для этого класса функций при некоторых дополнительных ограничениях доказано существование почти периодических сечений многозначных почти периодических отображений.

    We consider a class of Weyl almost periodic functions for which the set of ε-almost the periods defined by means of the Weyl pseudometric is relatively dense for all ε > 0: For this class of functions, under certain additional restrictions we prove the existence of almost periodic selections of almost periodic multivalued maps.

  7. В задаче о движении волчка Ковалевской в двойном поле (случай интегрируемости А.Г. Реймана-М.А. Семенова-Тян-Шанского) вычислен тип всех критических точек отображения момента.

    In the problem of motion of the Kowalevski top on two constant fields (the A.G. Reyman-M.A. Semenov-Tian-Shansky case) the type of all critical points of the momentum map is calculated.

  8. В работе предложено обобщение теоремы Надлера о неподвижных точках для многозначных отображений действующих в метрических пространствах. Полученный результат позволяет изучать существование неподвижных точек у многозначных отображений, которые не обязательно являются сжимающими, и даже непрерывными, относительно метрики Хаусдорфа, и образами которых могут быть произвольные множества соответствующего метрического пространства. Упомянутый результат можно использовать для исследования дифференциальных и функционально-дифференциальных уравнений с разрывами, а также включений, правые части которых порождены многозначными отображениями с произвольными образами. Во второй части работы, в качестве приложения, получены условия существования и продолжаемости решений задачи Коши для дифференциального включения с некомпактной правой частью в пространстве Rn.

    A generalization of the Nadler fixed point theorem for multi-valued maps acting in metric spaces is proposed. The obtained result allows to study the existence of fixed points for multi-valued maps that have as images any arbitrary sets of the corresponding metric space and are not necessarily contracting, or even continuous, with respect to the Hausdorff metric. The mentioned result can be used for investigating differential and functional-differential equations with discontinuities and inclusions generated by multi-valued maps with arbitrary images. In the second part of the paper, as an application, conditions of existence and continuation of solutions to the Cauchy problem for a differential inclusion with noncompact in Rn right-hand side are derived.

  9. Хорошо известно, что преобразование ренормгруппы $\mathcal{R}$ имеет единственную неподвижную точку $f_ {cr}$ в пространстве критических $C^{3}$-гомеоморфизмов окружности с одной кубической критической точкой $x_{cr}$ и числом вращения равным золотому сечению $\overline{\rho}: =\frac{\sqrt{5} -1}{2}.$ Обозначим через $Cr(\overline{\rho})$ множество всех критических отображений окружности $C^ {1}$-сопряженных к $f_{cr}.$ Пусть $f\in Cr(\overline{\rho})$ и $\mu:=\mu_{f}$ --- единственная вероятностная инвариантная мера для $f.$ Зафиксируем $\theta \in (0,1).$ Для каждого $n\geq 1$ определим $c_{n}:=c_{n}(\theta)$ такое, что $\mu([x_{cr}, c_{n}]) = \theta\cdot\mu([x_{cr}, f^{q_{n}} (x_{cr})]),$ где $q_{n}$ --- время первого возврата линейного вращения $f_{\overline{\rho}}.$ Мы исследуем закон сходимости перемасштабированного точечного процесса времени попадания. Мы показываем, что предельное распределение сингулярно относительно меры Лебега.

    It is well known that the renormalization group transformation $\mathcal{R}$ has a unique fixed point $f_{cr}$ in the space of critical $C^{3}$-circle homeomorphisms with one cubic critical point $x_{cr}$ and the golden mean rotation number $\overline{\rho}:=\frac{\sqrt{5}-1}{2}.$ Denote by $Cr(\overline{\rho})$ the set of all critical circle maps $C^{1}$-conjugated to $f_{cr}.$ Let $f\in Cr(\overline{\rho})$ and let $\mu:=\mu_{f}$ be the unique probability invariant measure of $f.$ Fix $\theta \in(0,1).$ For each $n\geq1$ define $c_{n}:=c_{n}(\theta)$ such that $\mu([x_{cr},c_{n}])=\theta\cdot\mu([x_{cr},f^{q_{n}}(x_{cr})]),$ where $q_{n}$ is the first return time of the linear rotation $f_{\overline{\rho}}.$ We study convergence in law of rescaled point process of time hitting. We show that the limit distribution is singular w.r.t. the Lebesgue measure.

  10. Рассматриваются многозначные отображения, действующие из частично упорядоченного пространства $(X,\leq)$ в множество $Y$, на котором задано рефлексивное бинарное отношение $\vartheta$ (это отношение не предполагается ни антисимметричным, ни транзитивным, т.е. $\vartheta$ не является порядком в $Y$). Для таких отображений введены аналоги понятий накрывания и монотонности. С использованием этих понятий исследуется включение $F(x)\ni \tilde{y}$, где $F\colon X \rightrightarrows Y$, $\tilde{y}\in Y$. Предполагается, что для некоторого заданного $x_0\in X$ существует $y_{0} \in F(x_{0})$ такой, что $(\tilde{y},y_{0}) \in \vartheta$. Получены условия существования решения $x\in X$ изучаемого включения, удовлетворяющего неравенству ${x\leq x_0}$, и условия существования минимального и наименьшего решений. Также определяется и исследуется свойство устойчивости решений рассматриваемого включения к изменениям многозначного отображения $F$ и элемента $\widetilde{y}$. А именно, рассматривается последовательность «возмущенных» включений $F_i(x)\ni \tilde{y}_i$, $i\in \mathbb{N}$, получены условия, при которых эти включения имеют решения $x_i \in X$ и для любой возрастающей последовательности $\{i_n\}$ натуральных чисел выполнено $\sup_{n \in \mathbb{N}}\{x_{i_{n}}\}= x$, где $x\in X$ — решение исходного включения.

    Set-valued mappings acting from a partially ordered space $X=(X,\leq)$ to a set $Y$ on which a reflexive binary relation $\vartheta$ is given (this relation is not supposed to be antisymmetric or transitive, i.e., $\vartheta$ is not an order in $Y$), are considered. For such mappings, analogues of the concepts of covering and monotonicity are introduced. These concepts are used to study the inclusion $F(x)\ni \tilde{y},$ where $F\colon X \rightrightarrows Y,$ $\tilde{y}\in Y.$ It is assumed that for some given $x_0 \in X,$ there exists $y_{0} \in F(x_{0})$ such that $(\tilde{y},y_{0}) \in \vartheta.$ Conditions for the existence of a solution $x\in X$ satisfying the inequality $x\leq x_0$ are obtained, as well as those for the existence of minimal and least solutions. The property of stability of solutions of the considered inclusion to changes of the set-valued mapping $F$ and of the element $\widetilde{y}$ is also defined and investigated. Namely, the sequence of “perturbed” inclusions $F_i(x)\ni \tilde{y}_i,$ $i\in \mathbb{N},$ is assumed, and the conditions of existence of solutions $x_i \in X$ such that for any increasing sequence of integers $\{i_n\}$ there holds $\sup_{n \in \mathbb{N}}\{x_{i_{n}}\}= x,$ where $x \in X$ is a solution of the initial inclusion, are derived.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref