Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'matrix computations.':
Найдено статей: 6
  1. Кривоносов Л.Н., Лукьянов В.А.
    Конформная связность со скалярной кривизной, с. 22-35

    Определена конформная связность со скалярной кривизной как обобщение псевдориманова пространства постоянной кривизны. Вычислена матрица кривизны такой связности. Доказано, что на многообразии конформной связности со скалярной кривизной имеется конформная связность с нулевой матрицей кривизны. Дано определение перенормируемого скаляра и доказано существование перенормируемых скаляров на любом многообразии конформной связности, где существует разбиение единицы. Доказано: 1) существование на многообразии конформной связности с нулевой матрицей кривизны конформной связности с положительной, отрицательной и знакопеременной скалярной кривизной; 2) существование на многообразии конформной связности глобальной калибровочно-инвариантной метрики; 3) на гиперповерхности конформного пространства индуцированная конформная связность не может быть с ненулевой скалярной кривизной.

    Krivonosov L.N., Luk'yanov V.A.
    Conformal connection with scalar curvature, pp. 22-35

    A conformal connection with scalar curvature is defined as a generalization of a pseudo-Riemannian space of constant curvature. The curvature matrix of such connection is computed. It is proved that on a conformally connected manifold with scalar curvature there is a conformal connection with zero curvature matrix. We give a definition of a rescalable scalar and prove the existence of rescalable scalars on any manifold with conformal connection where a partition of unity exists. It is proved: 1) on any manifold with conformal connection and zero curvature matrix there exists a conformal connection with positive, negative and alternating scalar curvature; 2) on any conformally connected manifold there exists a global gauge-invariant metric; 3) on a hypersurface of a conformal space the induced conformal connection can not be of nonzero scalar curvature.

  2. Золотых Н.Ю., Кубарев В.К., Лялин С.С.
    Метод двойного описания над полем алгебраических чисел, с. 161-175

    Рассматривается задача построения вершинного описания выпуклого полиэдра, заданного как множество решений некоторой системы линейных неравенств, коэффициенты которой являются алгебраическими числами. Обратная задача эквивалентна (двойственна) исходной. Предлагаются программные реализации нескольких модификаций хорошо известного метода двойного описания (метода Моцкина-Бургера), решающего поставленную задачу. Рассматривается два случая: 1) элементы системы неравенств - произвольные алгебраические числа, при этом каждое такое число задается минимальным многочленом и локализующим интервалом; 2) элементы системы неравенств принадлежат заданному конечному расширению ${\mathbb Q} (\alpha)$ поля ${\mathbb Q}$, при этом для $\alpha$ задаются минимальный многочлен и локализующий интервал, а все элементы исходной системы, конечные и промежуточные результаты представлены как многочлены от $\alpha$. Как и ожидалось, программная реализация для второго варианта значительно превосходит реализацию для первого варианта по производительности. Для большего ускорения во втором случае предлагается использовать булевы матрицы вместо матриц невязок. Результаты вычислительного эксперимента показывают, что программные реализации вполне пригодны для решения задач умеренных размеров.

    Zolotykh N.Y., Kubarev V.K., Lyalin S.S.
    Double description method over the field of algebraic numbers, pp. 161-175

    We consider the problem of constructing the dual representation of a convex polyhedron defined as a set of solutions to a system of linear inequalities with coefficients which are algebraic numbers. The inverse problem is equivalent (dual) to the initial problem. We propose program implementations of several variations of the well-known double description method (Motzkin-Burger method) solving this problem. The following two cases are considered: 1) the elements of the system of inequalities are arbitrary algebraic numbers, and each such number is represented by its minimal polynomial and a localizing interval; 2) the elements of the system belong to a given extension ${\mathbb Q} (\alpha)$ of ${\mathbb Q}$, and the minimal polynomial and the localizing interval are given only for $\alpha$, all elements of the system, intermediate and final results are represented as polynomials of $\alpha$. As expected, the program implementation for the second case significantly outperforms the implementation for the first one in terms of speed. In the second case, for greater acceleration, we suggest using a Boolean matrix instead of the discrepancy matrix. The results of a computational experiment show that the program is quite suitable for solving medium-scale problems.

  3. После статьи Молодцова [Molodtsov D. Soft set theory — First results // Computers and Mathematics with Applications. 1999. Vol. 37. No. 4-5. P. 19-31.] теория мягких множеств начала стремительно развиваться. Несколько авторов ввели различные операции, отношения, результаты и т.д., а также другие аспекты в теории мягких множеств и гибридных структур некорректно, несмотря на их широкое применение в математике и смежных областях. В своей работе [Molodtsov D.A. Equivalence and correct operations for soft sets // International Robotics and Automation Journal. 2018. Vol. 4. No. 1. P. 18-21.], Молодцов, отец теории мягких множеств, указал на несколько неверных результатов и понятий. Молодцов [Молодцов Д.А. Структура мягких множеств // Нечеткие системы и мягкие вычисления. 2017. Т. 12. Вып. 1. С. 5-18.] также заявил, что понятие мягкого множества не везде было полностью понято и использовано. В связи с этим важно пересмотреть причуды этих представлений и дать формальное изложение понятия эквивалентности мягкого множества. Молодцов уже исследовал многие корректные операции над мягкими множествами. Мы используем некоторые понятия и результаты Молодцова [Молодцов Д.А. Структура мягких множеств // Нечеткие системы и мягкие вычисления. 2017. Т. 12. Вып. 1. С. 5-18.] для создания матричных представлений, а также связанных с ними операций над мягкими множествами, и для количественной оценки сходства между двумя мягкими множествами.

    After the paper of Molodtsov [Molodtsov D. Soft set theory — First results, Computers and Mathematics with Applications, 1999, vol. 37, no. 4-5, pp. 19-31.] first appeared, soft set theory grew at a breakneck pace. Several authors have introduced various operations, relations, results, etc. as well as other aspects in soft set theory and hybrid structures incorrectly, despite their widespread use in mathematics and allied areas. In his paper [Molodtsov D.A. Equivalence and correct operations for soft sets, International Robotics and Automation Journal, 2018, vol. 4, no. 1, pp. 18-21.], Molodtsov, the father of soft set theory, pointed out several wrong results and notions. Molodtsov [Molodtsov D.A. Structure of soft sets, Nechetkie Sistemy i Myagkie Vychisleniya, 2017, vol. 12, no. 1, pp. 5-18.] also stated that the concept of soft set had not been fully understood and used everywhere. As a result, it is important to revisit the quirks of those conceptions and provide a formal account of the notion of soft set equivalency. Molodtsov already explored many correct operations on soft sets. We use some notions and results of Molodtsov [Molodtsov D.A. Structure of soft sets, Nechetkie Sistemy i Myagkie Vychisleniya, 2017, vol. 12, no. 1, pp. 5-18.] to create matrix representations as well as related operations of soft sets, and to quantify the similarity between two soft sets.

  4. Работа посвящена связи параллельных и последовательных вычислений. С одной стороны, рассматривается класс словарных предикатов, основанных на последовательных вычислениях, ограниченных по памяти константами и имеющих полиномиальную временную сложность. С другой стороны, рассматривается класс словарных предикатов, вычислимых на параллельных альтернирующих машинах за логарифмическое время. Доказано совпадение соответствующих классов. Предложено направление использования полученных результатов для взаимного преобразования и сочетания вычислений на молекулярных биоподобных последовательных машинах и параллельных вычислениях на векторно-матричных компьютерах. Предполагаемые области применения: обработка изображений в реальном масштабе времени для задач управления, анализ больших текстов и других больших данных.

    Beltiukov A.P., Maslov S.G., Joudakizadeh M.
    Mutual modeling of sequential and parallel word computations, pp. 299-308

    The work is devoted to the connection between parallel and sequential computing. On the one hand, we consider a class of word predicates based on sequential calculations, limited in memory by constants and having polynomial time complexity. On the other hand, we consider a class of word predicates that are computable on parallel alternating machines in logarithmic time. The coincidence of the corresponding classes is proven. The direction of using the obtained results for mutual transformation and combination of calculations on molecular biosimilar sequential machines and parallel calculations on vector-matrix computers is proposed. Intended applications: real-time image processing for control tasks, analysis of large texts and other big data.

  5. Представлена классификация форм уравнений динамики систем связанных твёрдых тел со структурой дерева. В основе классификации – компактные матричные формы записи уравнений кинематики и динамики систем тел, полученные с использованием понятия матрицы кинематической структуры и геометрического подхода при описании относительного движения. Единая форма записи уравнений движения удобна для представления и сравнения различных подходов к моделированию динамики систем твёрдых тел. Приведён сравнительный анализ вычислительной эффективности различных методов составления и разрешения уравнений движения систем твёрдых тел.

    Ivanov V.N., Dombrovskii I.V., Nabokov F.V., Shevelev N.A., Shimanovskii V.A.
    Classification of the models of rigid multibody systems applied for the numerical analysis of mechanical structures’ dynamic behavior, pp. 139-155

    The classification of the dynamic equations forms for the rigid multibody systems with tree structure has been presented. The classification is based on the compact matrix forms of multibody systems’ kinematic and dynamic equations derived through the matrix of kinematic structure and geometrical approach for relative motion description. The unified form of motion’s equations is suitable for representing and comparing of various approaches to the modeling of rigid multibody systems’ dynamics. The comparative analysis of computational efficiency has been carried out in relation to various methods of formulation and solution for motion equations of rigid multibody systems.

  6. Решение краевой задачи для простейшего волнового уравнения, заданной в прямоугольнике, допускает представление в виде суммы двух слагаемых. Они являются решениями двух краевых задач: в первом случае граничные функции постоянны, а во втором начальные функции имеют специальный вид. Подобная декомпозиция позволяет применять для численного решения обеих задач двумерные сплайны. Первая задача исследована ранее, получен экономичный алгоритм ее численного решения.
    Для решения второй задачи определено конечномерное пространство сплайнов лагранжевого типа, а в качестве решения предложен оптимальный сплайн, дающий наименьшую невязку. Для коэффициентов этого сплайна и для его невязки получены точные формулы. Формула для коэффициентов сплайна представляет собой линейную форму от исходных конечных разностей, заданных на границе.
    Формула для невязки представляет собой сумму двух простых слагаемых и двух положительно определенных квадратичных форм от новых конечных разностей, заданных на границе. Элементы матриц форм выражаются через многочлены Чебышёва, обе матрицы обратимы и таковы, что обратные к ним матрицы имеют трехдиагональный вид. Эта особенность позволяет получить для спектра матриц верхние и нижние оценки и показать, что невязка стремится к нулю с ростом размерности численной задачи. Данное обстоятельство обеспечивает корректность предлагаемого алгоритма численного решения второй задачи, обладающего линейной сложностью вычислений.

    The solution of a boundary value problem for a simple wave equation defined on a rectangle can be represented as a sum of two terms. They are solutions of two boundary value problems: in the first case, the boundary functions are constant, while in the second the initial functions have a special form. Such decomposition allows to apply two-dimensional splines for the numerical solution of both problems. The first problem was studied previously, and an economical algorithm of its numerical solution was developed.
    To solve the second problem we define a finite-dimensional space of splines of Lagrangian type, and recommend an optimal spline giving the smallest residual as a solution. We obtain exact formulas for the coefficients of this spline and its residual. The formula for the coefficients of this spline is a linear form of initial finite differences defined on the boundary.
    The formula for the residual is a sum of two simple terms and two positive definite quadratic forms of new finite differences defined on the boundary. Elements of matrices of forms are expressed through Chebyshev polynomials, both matrices are invertible and have the property that their inverses matrices are of tridiagonal form. This feature allows us to obtain upper and lower bounds for the spectrum of matrices, and to show that the residual tends to zero when the numerical problem dimension increases. This fact ensures the correctness of the proposed algorithm of numerical solution of the second problem which has linear computational complexity.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref