Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматривается задача уклонения убегающего от группы преследователей в конечномерном евклидовом пространстве. Движение описывается линейной системой дробного порядка вида $$\left({}^C D^{\alpha}_{0+}z_i\right)=A z_i+u_i-v,$$ где ${}^C D^{\alpha}_{0+}f$ - производная по Капуто порядка $\alpha\in(0,1)$ функции $f$, $A$ - простая матрица. В начальный момент времени заданы начальные условия. Управления игроков ограничены одним и тем же выпуклым компактом. Убегающий дополнительно стеснен фазовыми ограничениями - выпуклым многогранным множеством c непустой внутренностью. В терминах начальных позиций и параметров игры получены достаточные условия разрешимости задачи уклонения.
Evasion from pursuers in a problem of group pursuit with fractional derivatives and phase constraints, pp. 309-314The paper deals with the problem of avoiding a group of pursuers in the finite-dimensional Euclidean space. The motion is described by the linear system of fractional order $$\left({}^C D^{\alpha}_{0+}z_i\right)=A z_i+u_i-v,$$ where ${}^C D^{\alpha}_{0+}f$ is the Caputo derivative of order $\alpha\in(0,1)$ of the function $f$ and $A$ is a simple matrix. The initial positions are given at the initial time. The set of admissible controls of all players is a convex compact. It is further assumed that the evader does not leave the convex polyhedron with nonempty interior. In terms of the initial positions and the parameters of the game, sufficient conditions for the solvability of the evasion problem are obtained.
-
Рассматривается задача построения вершинного описания выпуклого полиэдра, заданного как множество решений некоторой системы линейных неравенств, коэффициенты которой являются алгебраическими числами. Обратная задача эквивалентна (двойственна) исходной. Предлагаются программные реализации нескольких модификаций хорошо известного метода двойного описания (метода Моцкина-Бургера), решающего поставленную задачу. Рассматривается два случая: 1) элементы системы неравенств - произвольные алгебраические числа, при этом каждое такое число задается минимальным многочленом и локализующим интервалом; 2) элементы системы неравенств принадлежат заданному конечному расширению ${\mathbb Q} (\alpha)$ поля ${\mathbb Q}$, при этом для $\alpha$ задаются минимальный многочлен и локализующий интервал, а все элементы исходной системы, конечные и промежуточные результаты представлены как многочлены от $\alpha$. Как и ожидалось, программная реализация для второго варианта значительно превосходит реализацию для первого варианта по производительности. Для большего ускорения во втором случае предлагается использовать булевы матрицы вместо матриц невязок. Результаты вычислительного эксперимента показывают, что программные реализации вполне пригодны для решения задач умеренных размеров.
система линейных неравенств, выпуклая оболочка, конус, полиэдр, метод двойного описания, алгебраические расширенияWe consider the problem of constructing the dual representation of a convex polyhedron defined as a set of solutions to a system of linear inequalities with coefficients which are algebraic numbers. The inverse problem is equivalent (dual) to the initial problem. We propose program implementations of several variations of the well-known double description method (Motzkin-Burger method) solving this problem. The following two cases are considered: 1) the elements of the system of inequalities are arbitrary algebraic numbers, and each such number is represented by its minimal polynomial and a localizing interval; 2) the elements of the system belong to a given extension ${\mathbb Q} (\alpha)$ of ${\mathbb Q}$, and the minimal polynomial and the localizing interval are given only for $\alpha$, all elements of the system, intermediate and final results are represented as polynomials of $\alpha$. As expected, the program implementation for the second case significantly outperforms the implementation for the first one in terms of speed. In the second case, for greater acceleration, we suggest using a Boolean matrix instead of the discrepancy matrix. The results of a computational experiment show that the program is quite suitable for solving medium-scale problems.
-
В конечномерном евклидовом пространстве рассматривается задача преследования группой преследователей одного убегающего, описываемая системой вида $$D^{(\alpha)}z_i = a z_i + u_i - v,$$ где $D^{(\alpha)}f$ - производная по Капуто порядка $\alpha \in (0, 1)$ функции $f$. Дополнительно предполагается, что убегающий в процессе игры не покидает пределы выпуклого многогранного множества с непустой внутренностью. Убегающий использует кусочно-программные стратегии, преследователи - кусочно-программные контрстратегии. Множество допустимых управлений - выпуклый компакт, целевые множества - начало координат, $a$ - вещественное число. В терминах начальных позиций и параметров игры получены достаточные условия разрешимости задачи преследования.
In the finite-dimensional Euclidean space, we consider the problem of persecution of one evader by the group of pursuers, which is described by the system $$D^{(\alpha)}z_i = a z_i + u_i - v,$$ where $D^{(\alpha)}f$ is the Caputo derivative of order $\alpha \in (0, 1)$ of the function $f$. It is further assumed that the evader does not leave the convex polyhedron with nonempty interior. The evader uses piecewise-program strategies, and the pursuers use piecewise-program counterstrategies. The set of admissible controls is a convex compact, the target sets are the origin of coordinates, and $a$ is a real number. In terms of the initial positions and the parameters of the game, sufficient conditions for the solvability of the pursuit problem are obtained.
-
В статье разработаны методы, необходимые для решения задач конформного отображения многогранников в $\mathbb{R}^3$. Результаты получены с использованием алгебры кватернионов и геометрических представлений. Определены прямое и обратное конформные отображения: верхнего полупространства на единичный шар, шаровой луночки на двугранный угол, двугранного и многогранного углов на верхнее полупространство. При помощи полученных результатов найдены решения прямой и обратной задач конформного отображения многогранников на верхнее полупространство. Решение прямой задачи конформного отображения основано на результатах теоремы Кристоффеля-Шварца. Решение обратной задачи выполнено методом последовательных конформных отображений. В целом полученные взаимно однозначные отображения основаны на том, что по теореме Лиувилля все конформные диффеоморфизмы любой области в пространстве являются преобразованиями Мёбиуса.
Methods necessary to solve problems of conformal mapping of polyhedra in $\mathbb{R}^3$ are developed. The results are obtained with the use of quaternion algebra and geometric representations. The direct and inverse conformal mappings are defined: those of the upper half-space onto the unit ball, those of a ball crescent onto the dihedral angle and those of dihedral and polyhedral angles onto the upper half-space. Solutions to the direct and inverse problems of conformal mapping of the polyhedrons onto the upper half-space are found using the results obtained. The solution to the direct problem of conformal mapping is based on the results of the Christoffel-Schwarz theorem. The solution of the inverse problem is obtained by the method of successive conformal mappings. In general, the one-to-one mappings obtained are based on the fact that, by the Liouville theorem, all conformal diffeomorphisms of any area in the space are the Möbius transformations.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.