Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'movement on a free surface':
Найдено статей: 4
  1. Мы исследуем эволюцию осесимметричного двухслойного медленного течения вязкой жидкости со свободной границей, которое создается начальным рельефом границ слоев и скоростями на нижней границе. Каждый слой имеет постоянную плотность и вязкость. Предполагается, что верхний слой имеет меньшую плотность, чем нижний. На основе уравнений Рейнольдса построена система нелинейных параболических уравнений относительно поверхности и границы раздела слоев для описания этого течения. Принимая безразмерный скачок плотностей между слоями как малый параметр, мы применяем метод асимптотических разложений, чтобы выделить главное приближение для медленной эволюции уравнений движения на больших временах. Получено асимптотическое уравнение, связывающее смещения поверхности и границы раздела слоев со скоростями на нижней границе. На основе этого уравнения разработан алгоритм для расчета полей скоростей в слоях на больших временах. Для наглядного представления течения используются линии тока. Численные результаты показали устойчивость линий тока в верхнем слое при вариации скорости на нижней границе. В качестве геофизических приложений разработанный алгоритм используется для количественной оценки поля скоростей в коре под крупномасштабными кольцевыми структурами на Луне (верхний слой), создаваемого глубинными движениями в подстилающей мантии (нижний слой). Чтобы подтвердить достоверность результатов моделирования, мы сопоставляем рассчитанные поля скоростей с системами хребтов кольцевых структур, полученных из экспериментальных наблюдений. Модельное сравнение показало пространственную близость радиусов кольцевых хребтов и особых точек скорости течения на поверхности.

    We study the long-time evolution of axisymmetric free-surface two-layered creeping flow subject to the initial topography of its boundaries and bottom velocities. Each layer has uniform density and viscosity. The upper layer is assumed to have a smaller density than the lower layer. Based on lubrication approximation (the Reynolds equations) the nonlinear system of diffusion-type equations with respect to the surface and interface between the layers is obtained to describe this flow. Taking the dimensionless density contrast between the layers as a small parameter, we apply the method of asymptotic expansions to extract leading-term approximation for the slowly varying large-time evolution of the governing equations. An asymptotic equation relating both surface and interface displacement to the bottom velocities is derived. Based on this equation, we develop the algorithm to calculate velocity fields within layers for large time. Streamlines are used to visualize the flow. Numerical results reveal stability of the streamlines in the upper layer under variation of the bottom velocity. As geophysical applications, the developed algorithm is used to evaluate the velocity field in the crust (the upper layer) beneath the large-scale lunar multi-ring basins influenced by deep movements in the underlying mantle (the lower layer). To validate the results of modeling, we compare the calculated velocity fields with basin ridge systems obtained by experimental observations. The model comparison has shown proximity of radii of basin rings and critical points of the surface velocity.

  2. Рассматривается плоская задача о движении кругового цилиндра с переменным радиусом в идеальной, несжимаемой, тяжелой жидкости. Предполагается, что начальное возмущение жидкости вызвано вертикальным и безотрывным ударом цилиндра, полупогруженного в жидкость. Особенностью этой задачи является то, что при определенных условиях (например, при быстром торможении цилиндра или при быстром уменьшении его радиуса), происходит отрыв жидкости от тела, в результате которого вблизи его поверхности образуются присоединенные каверны. Формы внутренних свободных границ и конфигурация внешней свободной границы заранее неизвестны и подлежат определению в ходе решения задачи. Формулируется нелинейная задача с односторонними ограничениями, на основе которой определяется связность зоны отрыва, а также формы свободных границ жидкости на малых временах. В случае когда давление на внешней свободной поверхности совпадает с давлением в каверне, строится аналитическое решение задачи. Для определения одной из двух симметричных точек отрыва получено трансцендентное уравнение, содержащее полный эллиптический интеграл первого рода и элементарные функции. При кавитационном торможении недеформируемого цилиндра найдена явная формула для внутренней свободной границы жидкости на малых временах. Показано хорошее согласование аналитических результатов с прямыми численными расчетами.

    The 2D problem of the movement of a circular cylinder with a variable radius in an ideal, incompressible, heavy fluid is considered. It is assumed that the initial perturbation of the fluid is caused by a vertical and continuous impact of the cylinder semi-submerged in the fluid. The feature of this problem is that under certain conditions (for example, at fast braking of the cylinder or at fast reduction of its radius), there is a separation of the fluid from the body, resulting in the formation of attached cavities near its surface. The forms of the inner free boundaries and the configuration of the external free border are in advance unknown and are subject to definition when the problem is solved. A nonlinear problem with one-sided constraints is formulated, on the basis of which the connectivity of the separation zone and the shape of the free boundaries of the fluid at small times are determined. In the case where the pressure on the external free surface coincides with the pressure in the cavity, an analytical solution of the problem is constructed. To define one of two symmetric points of separation, a transcendental equation containing a full elliptic integral of the first kind and elementary functions is obtained. For the case of cavitational braking of a nondeformable cylinder, an explicit formula for the inner free boundary of the fluid on small times is found. Good agreement of analytical results with direct numerical calculations is shown.

  3. publication_info"> Бурлаков Д.С., Сеславина А.А.
    О движении цилиндрической шайбы по горизонтальной плоскости, с. 125-139

    Рассматривается задача о скольжении однородного прямого цилиндра произвольной формы (шайбы) по горизонтальной плоскости под действием сил сухого трения. Пятно контакта цилиндра с плоскостью совпадает с его основанием. Одной из центральных гипотез в работе является выбор математической модели взаимодействия малого элемента поверхности шайбы с плоскостью. Предполагается, что данное явление описывается законом сухого трения Амонтона–Кулона. В данной работе основное внимание уделено качественному анализу уравнений движения системы, который позволит описать динамику при малых значениях кинетической энергии системы (финальную динамику). Сформулированы и доказаны качественные свойства динамики произвольных шайб. Приведены примеры, показывающие различие финальной динамики шайб, опирающихся на шероховатую плоскость круглым основанием, центрально-симметричным и произвольной формы.

    publication_info"> Burlakov D.S., Seslavina A.A.
    On free movement of puck on horizontal plane, pp. 125-139

    We consider the problem of a homogeneous direct cylinder of an arbitrary form (a puck) sliding on a horizontal surface under the action of dry friction forces. The surface contact spot of the cylinder coincides with its base. One of the central hypotheses in the work is the choice of a mathematical model of interaction between a small surface element of a puck and a plane. It is assumed, that the current effect is described by the Amonton–Coulomb’s law of friction. In the present work the basic attention is given to the qualitative analysis of the equations of motion for systems, the one which allow to describe dynamics at small values of the system’s kinetic energy (final dynamics). Qualitative properties of dynamics for arbitrary pucks are formulated and proved. We present examples illustrating the difference in final dynamics for pucks with round, centrosymmetrical and arbitrary bases on a rough surface.

  4. publication_info"> Кленов А.И., Ветчанин Е.В., Килин А.А.
    Экспериментальное определение присоединенных масс тела методом буксировки, с. 568-582

    Данная работа посвящена экспериментальному определению присоединенных масс тел, погруженных в жидкость полностью или частично. В работе приводятся схема экспериментальной установки, методика проведения эксперимента и математическая модель, положенная в основу методики. Метод определения присоединенной массы основан на буксировке тела при известной тяговой силе. Из теории известно, что понятие присоединенной массы возникает в предположении потенциальности обтекания тела жидкостью. В связи с этим мы дополнительно проводим PIV-визуализацию потоков, генерируемых буксируемым телом, и определяется участок траектории, на котором обтекание можно считать потенциальным. Для верификации методики проведен ряд экспериментов по определению присоединенных масс эллипсоида вращения. Результаты измерений согласуются с известными справочными данными. На основе разработанной методики определены присоединенные массы безвинтового надводного робота.

    publication_info"> Klenov A.I., Vetchanin E.V., Kilin A.A.
    Experimental determination of the added masses by method of towing, pp. 568-582

    This paper is concerned with the experimental determination of the added masses of bodies completely or partially immersed in a fluid. The paper presents an experimental setup, a technique of the experiment and an underlying mathematical model. The method of determining the added masses is based on the towing of the body with a given propelling force. It is known (from theory) that the concept of an added mass arises under the assumption concerning the potentiality of flow over the body. In this context, the authors have performed PIV visualization of flows generated by the towed body, and defined a part of the trajectory for which the flow can be considered as potential. For verification of the technique, a number of experiments have been performed to determine the added masses of a spheroid. The measurement results are in agreement with the known reference data. The added masses of a screwless freeboard robot have been defined using the developed technique.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref