Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'impact':
Найдено статей: 16
  1. В работе изучается влияние цветного шума на равновесные режимы нелинейных динамических систем. Для исследования реакции системы на малые возмущения используется асимптотический подход, развивающий технику функций стохастической чувствительности. Стохастическая чувствительность равновесия в общей многомерной динамической системе задается некоторой матрицей. Для этой матрицы стохастической чувствительности в работе получено матричное алгебраическое уравнений. Точное решение этого уравнения дается для важного класса нелинейных осцилляторов с возмущениями в форме цветных шумов. Эта теория применяется к параметрическому исследованию отклика электронного генератора с жестким возбуждением на цветные шумы с различным временем корреляции. В работе исследована зависимость дисперсии случайных состояний от характерного времени корреляции. Показано, что эта зависимость может быть немонотонной и иметь максимумы, соответствующие резонансам. В работе обсуждается вероятностный механизм стохастической генерации колебаний больших амплитуд, вызванной цветным шумом.

    The influence of colored noise on the equilibrium regimes of nonlinear dynamical systems is investigated. To study the response of the system to small perturbations, we use an asymptotic approach that develops the stochastic sensitivity function technique. The stochastic sensitivity of equilibrium in a general multidimensional dynamical system is defined by some matrix. For this stochastic sensitivity matrix, we obtain a matrix algebraic equation. An exact solution of this equation is given for an important class of nonlinear oscillators with perturbations in the form of colored noises. This theory is applied to the parametric study of the response of the electronic generator with hard excitation to colored noises with various correlation times. The dependence of the dispersion of random states on the characteristic correlation time is investigated. It is shown that this dependence can be nonmonotonic and have maxima corresponding to the resonances. The paper discusses the probabilistic mechanism of the stochastic generation of large-amplitude oscillations caused by color noise.

  2. Рассмотрена математическая модель конкуренции в условиях биологической инвазии, записываемая в виде системы нелинейных уравнений параболического типа. Изучается конкуренция двух близкородственных видов — резидента и инвайдера. Динамика популяций на неоднородном ареале определяется локальным взаимодействием и диффузионным распространением. Для популяции инвайдера учитывается межвидовой таксис и направленная миграция, вызванная неоднородностью жизненных условий. В вычислительных экспериментах определены наборы миграционных параметров, отвечающих различным инвазивным сценариям. Дан анализ влияния начальных распределений на конкурентное исключение и сосуществование видов.

    A mathematical model of competition under conditions of biological invasion, written in the form of a system of nonlinear parabolic equations, is considered. The competition of two closely related species — resident and invader — is studied. The dynamics of populations in a heterogeneous area is determined by local interaction and diffusion. For the invader population, interspecific taxis and directed migration caused by heterogeneity of living conditions are taken into account. In computational experiments, sets of migration parameters corresponding to various invasion scenarios are determined. An analysis of the influence of initial distributions on competitive exclusion and coexistence of species is given.

  3. В статье рассматриваются применения теории нормальных форм к вопросам термодинамики неидеальных сред, описываемых термическими уравнениями состояния. Исходя из фундаментального уравнения Гиббса-Дюгема, вводится понятие контактной эквивалентности таких уравнений. Приводятся основные результаты формальной теории нормальных форм для контактных систем с полиномиальным квазиоднородным невозмущенным гамильтонианом, формулируются определение нормальной формы контактного гамильтониана и теорема о нормализации. С точки зрения приложений, рассматриваются модели смеси неидеальных газов и классической водородной плазмы. Для уравнения состояния смеси неидеальных газов, заданного в форме вириального разложения, показывается, что оно контактно эквивалентно уравнению состояния смеси идеальных газов. Кроме того, приводятся явные формулы для одного из возможных нормализующих преобразований. Нетривиальность физических эффектов, вносимых в модель идеальной среды резонансными возмущениями, иллюстрируется на примере возмущенного уравнения модели Дебая-Хюккеля водородной плазмы. Для этой модели находятся младшие члены возмущения в нормальной форме, и объясняется их физический смысл.

    In this article we consider applications of the theory of normal forms to the questions of thermodynamics of non-ideal media described by thermal equations of state. On the basis of the fundamental Gibbs-Duhem equation the notion of contact equivalence of such equations is introduced. Basic results from formal theory of normal forms for contact systems with a polynomial quasi-homogeneous unperturbed Hamiltonian are given, the definition of normal form of a contact Hamiltonian and the normalization theorem are formulated. From the application point of view, models for a mixture of non-ideal gases and classical hydrogen plasma are considered. For the equation of state of a mixture of non-ideal gases given in the form of a virial expansion it is shown that this equation is contact-equivalent to the equation of state of a mixture of ideal gases. Furthermore, explicit formulae for one of the possible normalizing transformations are given. Non-triviality of the physical effects that take place due to the impact of resonant perturbations on a model of ideal medium is illustrated by the example of perturbed equation for the Debye-Hückel model of hydrogen plasma. For this model the lowest terms of the perturbation in normal form are determined and their physical meaning is explained.

  4. Рассматриваются ударные движения плоских твердых дисков над неподвижной горизонтальной плоскостью в однородном поле тяжести. Плоскость является абсолютно гладкой, соударения с плоскостью - абсолютно упругими. Диски движутся в вертикальной плоскости и вращаются вокруг горизонтальной оси, при этом они могут отрываться от плоскости с последующими ударами и прыжками. Приведены двумерные отображения таких движений дисков на фазовой плоскости при различных энергиях. Также определены стационарные точки и проведен полный анализ их линейной устойчивости. Показано, что в плоскости параметров имеется множество зон устойчивости и неустойчивости в первом приближении. Получены явные аналитические условия устойчивости и неустойчивости через параметры задачи.

    We consider the motion of a flat rigig disks bouncing off a horizontal plane in the gravity field. The plane is assumed to be absolutely smooth and the impact absolutely elastic. The disks move in vertical plane and rotate around horizontal axis, while the disks are able to break off from the plane with following impacts and bounces. For different values of the energy, 2D projections of the disk’s trajectories onto the phase plane are given. The stationary points are determined and their linear stability is studied in detail. It is shown, there are alternating domains of linear stability and instability in the first approximation in the plane parameters. The stability conditions are expressed analytically in terms of the parameters of the problem.

  5. Давыденко А.А.
    Численное решение задачи Бока, с. 59-64

    Численно исследуются орбиты звезд скопления, обращающегося в плоскости Галактики по круговой орбите (задача Бока). В качестве модели потенциала скопления используется модель Шустера–Пламмера. Рассматривается влияние начальных условий на характер финальных движений, в частности на возможность вылета звезды из скопления. Произведен массовый расчет орбит звезд для различных начальных значений энергии и момента импульса относительно скопления. Оценены вероятности вылета звезды из скопления.

    Davydenko A.A.
    Numerical solving Bok’s problem, pp. 59-64

    We numerically investigate the orbits of star cluster moving in the plane of the Galaxy in a circular orbit (Bok’s problem). Shuster–Plummer model is used as a model of the potential of the cluster. We examine the impact of initial conditions on the star movements, in particular on the star opportunity to fly out of the cluster. The mass calculation of star orbits for various initial values of energy and momentum with respect to the cluster is carried out. The probabilities for a star to leave a cluster are estimated.

  6. Рассматривается управляемая механическая система с сухим трением и позиционным импульсным или позиционным разрывным управлением. Она может быть представлена в виде уравнений Лагранжа второго рода:

    A(t,q)d2q/dt2=g(t,q,dq/dt)+QA(t,q,dq/dt)+QT(t,q,dq/dt)+u, tI=[t0,t0+T]. (1)

    Целью управления является  движение системы по  множеству S={(t,q,dq/dt)∈I×Rn×Rn: σ(t,q,dq/dt)=0} (задача стабилизации) или в окрестности этого множества (задача сближения). Первая задача решается с использованием  позиционного управления релейного типа с ограниченными ресурсами, для которых режим декомпозиции является устойчивым скользящим режимом системы (1). При недостаточности ресурсов обычного разрывного управления движение системы в окрестности  множества S происходит при помощи высокочастотных импульсных воздействий на нее в дискретные моменты времени в импульсно-скользящем режиме, равномерный предел которого (идеальный импульсно-скользящий режим) совпадает с режимом декомпозиции. Отличительной особенностью поставленных задач является наличие в системе (1) сил сухого трения, которые, вообще говоря, могут рассматриваться как некоторые неуправляемые разрывные или многозначные возмущения.

    Основные понятия даны во введении статьи. В первом разделе показана связь между идеальными импульсно-скользящими режимами включения

    A(t,x)F(t,x)+u,

    где u - позиционное импульсное управление, и скользящими режимами системы

    A(t,x)F(t,x)+B(t,x)ũ(t,x)

    с позиционным разрывным управлением. Второй раздел посвящен системам вида (1). В третьем разделе рассматривается важное для приложений целевое множество S системы (1), которое определяется векторной функцией σ(t,q,dq/dt)=dq/dt-φ(t,q). Для последнего случая использованы  более простые и содержательные условия, гарантирующие существование скользящих режимов для системы с позиционным разрывным управлением. В заключении рассмотрен пример.

    We consider a controlled mechanical system with dry friction and positional pulse or positional discontinuous control. It can be presented in a form of Lagrange equations of the second kind

    A(t,q)d2q/dt2=g(t,q,dq/dt)+QA(t,q,dq/dt)+QT(t,q,dq/dt)+u, tI=[t0,t0+T]. (1)

    The goal of the control is the motion of the system (1) in set S={(t,q,dq/dt)∈I×Rn×Rnσ(t,q,dq/dt)=0} (problem of stabilization) or in the neighborhood of set S (approach problem). The first problem is solved with discontinuous positional control of relay type with limited resources, for which a decomposition mode is a stable sliding mode of system (1). In case of insufficiency of resources of discontinuous control the motion of the controlled system in the neighborhood of set S can be implemented under high-frequency impacts on the system in discrete time moments in the pulse-sliding mode, the uniform limit of which (an ideal pulse-sliding mode) is equal to the decomposition mode. The distinctive feature of the assigned problems is dry friction in the system (1), and said dry fiction, generally speaking, can be considered as uncontrollable discontinuous or multivalued perturbations. 

    Main definitions are given in the introduction of the article. In the first section the connection between ideal pulse-sliding modes of inclusion

    A(t,x)F(t,x)+u,

    where u is a positional pulse control, and sliding modes of system

    A(t,x)F(t,x)+B(t,x)ũ(t,x)

    with a positional discontinuous control is considered. The second section is devoted to systems of type (1). In the third section we consider set S, which is important in relation to applications and is defined by the vector function σ(t,q,dq/dt)=dq/dt-φ(t,q). For the last case more simple and informative conditions of the existence of sliding modes for a system with discontinuous controls were used. An example was considered in conclusion.

  7. Проведено численное исследование процесса формирования сферического ударного импульса в газе и его взаимодействие с защитным барьером из водной пены, сопровождающееся образованием вихревых течений. Поставленная задача решена для случая двумерной осевой симметрии с использованием двухфазной газожидкостной модели, базирующейся на законах сохранения массы, импульса и энергии смеси и уравнении динамики объемного содержания фаз. Численное решение реализовано на базе открытого пакета OpenFOAM с применением стандартного решателя compressibleMultiphaseInterFoam, модифицированного в соответствии с условиями задачи и модельными представлениями. Дискретизация системы уравнений в выбранном солвере проведена методом контрольных объемов с применением вычислительного алгоритма Pimple. Показано значительное снижение интенсивности ударной волны при ее взаимодействии с преградой из водной пены и выявлены причины, приводящие к вихреобразованию в газовой области. Оценена достоверность полученных результатов сравнением с решением аналогичной задачи другими численными методами.

    The formation process of a spherical shock impulse in gas and its interaction with a protective aqueous foam barrier, accompanied by formation of vortex flows, are numerically investigated. The problem is solved in a two-dimensional axisymmetric formulation using a two-phase model of a gas-liquid mixture, which includes the laws of conservation of mass, momentum and energy of the mixture and an equation for the dynamics of volume content of phases.The numerical implementation is carried out on the basis of the OpenFOAM package using the standard compressibleMultiphaseInterFoam solver, modified in accordance with the conditions of the problem and model representations. The discretization of the system of equations in the chosen solver is carried out by the method of finite volumes using the computational Pimple algorithm. A significant decrease in the intensity of the shock wave in its interaction with the aqueous foam barrier is shown and the causes leading to vortex formation in the gas region are revealed. The reliability of the results obtained is estimated by comparison with solutions of a similar problem by other numerical methods.

  8. В статье рассмотрены основные принципы постановок задач в механике твердого тела при наличии связей (с сухим трением и без). Основное внимание уделено предыстории начальных условий задачи, которая должна быть корректно определена таким образом, чтобы не требовалось введения дополнительных гипотез и допущений, выводящих исследование за рамки динамики твердого тела без ударов. Тогда динамика движения (и/или равновесия) твердых тел может быть описана однозначно и без каких-либо парадоксальных ситуаций (парадоксов Пэнлеве). Эта методика иллюстрируется на трех известных задачах механики: опирание твердого тела на одну точку при наличии сухого трения, движение стержня с ползунами в направляющих с сухим трением, опирание твердого тела на две точки с сухим трением («скамейка»).

    We consider basic concepts for setting the problems of motion of a rigid body with constraints (with and without dry friction). The main accent is placed upon the prehistory of initial condition of a problems, which should be formulated in a correct manner which would not require introducing additional hypothesis and assumptions which make one to leave the frames of the rigid body dynamics without impacts. With such correct formulation, the dynamics of motion (or equilibrium) of rigid bodies can be described without occurence of some paradoxic situations (Painlev'e paradoxes). The presented methodology is illustrated by three well-known problems in mechanics: 1) rigid body with a single contact point with a surface in the presence of dry friction, 2) sliding bar in the sliding ways with dry friction, 3) rigid body with two point contact in the presence of dry friction («bench»).

  9. Критически обсуждаются различные способы определения иррегулярных и регулярных сил в звездных системах. Наиболее удовлетворительным кажется определение Эддингтона, согласно которому регулярная сила - это сила притяжения сплошной гравитирующей среды, получающейся «размешиванием» вещества по системе. Интерес представляет также определение регулярной силы как математического ожидания случайной силы. Подчеркивается, что время пересечения τc, характерное время действия регулярных сил, определяет темп коллективных процессов в системе. Существенно, что регулярные силы могут приводить и, как правило, приводят к бесстолкновительной стохастизации. В этой связи рассматривается квазиэнтропия, среднее по фазовому пространству значение произвольной выпуклой функции от крупнозернистой функции распределения. Максимум квазиэнтропии для невращающихся систем возможен только при изотропном распределении скоростей. Приводятся найденные Антоновым выражения для ее первой и второй вариаций. Если вторая вариация положительна хотя бы для некоторого изменения плотности, то это означает, что данное состояние системы не является наивероятнейшим. Отсюда следует, что эволюция вдоль последовательности политропных шаров невозможна без поступления в систему дополнительной энергии. Напоминается классификация видов фазового размешивания в бесстолкновительных системах.

    Кратко рассматривается проблема столкновительной релаксации в гравитирующих системах. Излагается подход к ее решению с точки зрения теории геодезических потоков с последующим усреднением по ансамблю, что требует знания закона распределения случайной силы. Чтобы избежать обрезания распределения Хольцмарка на малых прицельных расстояниях, использовано распределение случайной силы, найденное Петровской. В этом случае оказывается, что отношение эффективного времени стохастизации к времени пересечения пропорционально N/(ln N)½, где N>>1 - число тел в системе. Полученная временная шкала столкновительной эволюции практически совпадает с шкалой, ранее предложенной Генкиным.

    Various ways of definition of irregular (random) and regular (smoothed) forces in stellar systems are critically discussed. The most satisfactory is Eddington's one according to which the regular force is an attraction force of a continuous fluid resulting from spreading a stellar mass over a system. Also, a definition of the regular force as a mathematical expectation of a random force is of interest. It is emphasized that the crossing time, τc, a time scale of regular forces, characterizes the rate of collective processes in the system, including collisionless relaxation, that (as a rule) occurs in gravitating systems. The quasi-entropy, i.e., a result of averaging of an arbitrary convex function of a coarse-grained distribution function over the phase space, is discussed as a measure of collisionless stochastization. For non-rotating systems the maximum of quasi-entropy can be reached only for isotropic velocity distributions. Formulas for the first and second variations of quasi-entropy, found by Antonov, are given. If there exists the density variation so that the second variation of quasi-entropy is positive, then the present state of the system is not the most probable. It follows from this assertion that evolution along a sequence of polytropic spheres is not possible without some energy input to the system. We recall the classification of forms of the phase mixing in collisionless systems.

    The problem of collisional relaxation in gravitating systems is briefly discussed. We state the approach to its analysis on the basis of studying geodesic flows and the ensemble averaging as the next step, which requires the knowledge of distribution of a random force. To avoid truncation of Holtsmark's distribution at small impact parameters the distribution of random force by Petrovskaya was used. In that case the ratio of the effective stochastization time to the crossing time is proportional to N/(ln N)½, where N>>1 is the number of stars in the system. This evolutionary time scale is close to the one found earlier by Genkin.

  10. Рассматривается плоская задача о движении кругового цилиндра с переменным радиусом в идеальной, несжимаемой, тяжелой жидкости. Предполагается, что начальное возмущение жидкости вызвано вертикальным и безотрывным ударом цилиндра, полупогруженного в жидкость. Особенностью этой задачи является то, что при определенных условиях (например, при быстром торможении цилиндра или при быстром уменьшении его радиуса), происходит отрыв жидкости от тела, в результате которого вблизи его поверхности образуются присоединенные каверны. Формы внутренних свободных границ и конфигурация внешней свободной границы заранее неизвестны и подлежат определению в ходе решения задачи. Формулируется нелинейная задача с односторонними ограничениями, на основе которой определяется связность зоны отрыва, а также формы свободных границ жидкости на малых временах. В случае когда давление на внешней свободной поверхности совпадает с давлением в каверне, строится аналитическое решение задачи. Для определения одной из двух симметричных точек отрыва получено трансцендентное уравнение, содержащее полный эллиптический интеграл первого рода и элементарные функции. При кавитационном торможении недеформируемого цилиндра найдена явная формула для внутренней свободной границы жидкости на малых временах. Показано хорошее согласование аналитических результатов с прямыми численными расчетами.

    The 2D problem of the movement of a circular cylinder with a variable radius in an ideal, incompressible, heavy fluid is considered. It is assumed that the initial perturbation of the fluid is caused by a vertical and continuous impact of the cylinder semi-submerged in the fluid. The feature of this problem is that under certain conditions (for example, at fast braking of the cylinder or at fast reduction of its radius), there is a separation of the fluid from the body, resulting in the formation of attached cavities near its surface. The forms of the inner free boundaries and the configuration of the external free border are in advance unknown and are subject to definition when the problem is solved. A nonlinear problem with one-sided constraints is formulated, on the basis of which the connectivity of the separation zone and the shape of the free boundaries of the fluid at small times are determined. In the case where the pressure on the external free surface coincides with the pressure in the cavity, an analytical solution of the problem is constructed. To define one of two symmetric points of separation, a transcendental equation containing a full elliptic integral of the first kind and elementary functions is obtained. For the case of cavitational braking of a nondeformable cylinder, an explicit formula for the inner free boundary of the fluid on small times is found. Good agreement of analytical results with direct numerical calculations is shown.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref