Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'multiplicative control problem':
Найдено статей: 7
  1. Исследуется задача мультипликативного управления для стационарной диффузионно-дрейфовой модели зарядки полярного диэлектрика. Роль управления играет старший коэффициент в уравнении модели, имеющий смысл коэффициента диффузии электронов. Глобальная разрешимость краевой задачи и локальная единственность ее решения, а также разрешимость экстремальной задачи доказана в предыдущих работах авторов. В настоящей работе для задачи управления выводится система оптимальности и устанавливаются условия локальной регулярности множителя Лагранжа. На основе анализа данной системы доказывается локальная единственность решения задачи мультипликативного управления для конкретных функционалов качества.

    The multiplicative control problem for a stationary diffusion-drift model of charging a polar dielectric is studied. The role of control is played by a leading coefficient in the model equation, which has the meaning of the electron diffusion coefficient. The global solvability of the boundary value problem and the local uniqueness of its solution, as well as the solvability of the extremum problem under consideration, have been proved in the previous papers of the authors. In this paper, an optimality system is derived for the control problem and local regularity conditions for the Lagrange multiplier are established. Based on the analysis of this system, the local uniqueness of the multiplicative control problem's solution for specific cost functionals is proved.

  2. Рассматривается задача простого группового преследования группы из m убегающих (m ≥ 1) с равными возможностями. Говорят, что в задаче преследования одного убегающего (m = 1) происходит многократная поимка, если заданное количество преследователей ловят его, при этом моменты поимки могут не совпадать. В задаче об одновременной поимке одного убегающего требуется, чтобы моменты поимки совпадали. В работе введено понятие одновременной многократной поимки группы убегающих (m ≥ 2). Одновременная многократная поимка всей группы убегающих происходит, если в результате преследования происходит одновременная многократная поимка каждого убегающего, причем в один и тот же момент времени. В терминах начальных позиций участников получены необходимые и достаточные условия одновременной многократной поимки всей группы убегающих.

    The present paper deals with the problem of simple pursuit of group of m evaders (m ≥ 1) with equal opportunities. We say that a multiple capture in the problem of pursuit of one evader (m = 1) holds if the specified number of pursuers catch him, possibly at different times. The problem of the simultaneous capture of one evader requires that capture moments coincide. We introduce the concept of multiple simultaneous capture of the whole group of evaders (m ≥ 2). We say that the simultaneous multiple capture of the whole group of evaders holds if the simultaneous multiple capture of every evader holds in the same time. We obtain necessary and sufficient conditions for simultaneous multiple capture of the whole group of evaders in terms of initial positions of the participants.

  3. Рассматривается задача преследования группы из m убегающих (m≥1) в конфликтно управляемом процессе с равными возможностями. Говорят, что в задаче преследования одного убегающего (m=1) происходит многократная поимка, если заданное количество преследователей ловят его, при этом моменты поимки могут не совпадать. В задаче об одновременной многократной поимке одного убегающего требуется, чтобы моменты поимки совпадали. Одновременная многократная поимка всей группы убегающих (m≥2) происходит, если в результате преследования происходит одновременная многократная поимка каждого убегающего, причем в один и тот же момент времени. В терминах начальных позиций участников получены необходимые и достаточные условия одновременной многократной поимки всей группы убегающих.

    The present paper deals with the problem of pursuit of the group of m evaders (m1) in a conflict-controlled process with equal opportunities. We say that a multiple capture in the problem of pursuit of one evader (m=1) holds if the specified number of pursuers catch him, possibly at different times. The problem of the simultaneous multiple capture of one evader requires that capture moments coincide. We say that the simultaneous multiple capture of the whole group of evaders (m2) holds if the simultaneous multiple capture of every evader holds at the same time. We obtain necessary and sufficient conditions for simultaneous multiple capture of the whole group of evaders in terms of initial positions of the participants.

  4. Рассматривается задача преследования группы жестко скоординированных убегающих в нестационарном конфликтно управляемом процессе с равными возможностями: $$\begin{array}{llllllllcccc} P_i & : & \dot x_i = A(t)x_i + u_i,& u_i \in U(t), & x_i(t_0) = X_i^0, & i = 1,2, \dots, n, \\ E_j & : & \dot y_j = A(t)y_j + v, & v \in U(t) , & y_j(t_0) = Y_j^0 , & j = 1,2, \dots, m. \\ \end{array}$$ Говорят, что в задаче преследования происходит многократная поимка, если заданное количество преследователей ловят убегающих, при этом моменты поимки могут не совпадать: $$x_\alpha (\tau_\alpha) = y_{j_\alpha}(\tau_\alpha), \quad \alpha \in \Lambda, \quad \Lambda \subset \{1,2, \dots, n\}, \quad |\Lambda| = b\quad (n \geqslant b \geqslant 1), \\ j_\alpha \subset \{1,2, \dots, m\}.$$ В задаче о нестрогой одновременной многократной поимке требуется, чтобы моменты поимки совпадали: $$x_\alpha (\tau) = y_{j_\alpha}(\tau), \quad \alpha \in \Lambda.$$ Одновременная многократная поимка происходит, если совпадают наименьшие моменты поимки: $$x_\alpha (\tau) = y_{j_\alpha}(\tau), \quad x_\alpha(s) \ne y_{j_\alpha}(s), \quad s \in [t_0, \tau), \quad \alpha \in \Lambda.$$ В данной работе получены необходимые и достаточные условия многократной и нестрогой одновременной многократной поимок.

    Blagodatskikh A.I.
    Multiple capture of rigidly coordinated evaders, pp. 46-57

    The present paper deals with the problem of pursuit of a group of rigidly coordinated evaders in a nonstationary conflict-controlled process with equal opportunities $$\begin{array}{llllllllcccc} P_i & : & \dot x_i = A(t)x_i + u_i,& u_i \in U(t), & x_i(t_0) = X_i^0, & i = 1,2, \dots, n, \\ E_j & : & \dot y_j = A(t)y_j + v, & v \in U(t) , & y_j(t_0) = Y_j^0 , & j = 1,2, \dots, m. \\ \end{array}$$ We say that a multiple capture in the problem of pursuit holds if the specified number of pursuers catch evaders, possibly at different times $$x_\alpha (\tau_\alpha) = y_{j_\alpha}(\tau_\alpha), \quad \alpha \in \Lambda, \quad \Lambda \subset \{1,2, \dots, n\}, \quad |\Lambda| = b\quad (n \geqslant b \geqslant 1), \\ j_\alpha \subset \{1,2, \dots, m\}.$$ The problem of nonstrict simultaneous multiple capture requires that capture moments coincide $$x_\alpha (\tau) = y_{j_\alpha}(\tau), \quad \alpha \in \Lambda.$$ The problem of a simultaneous multiple capture requires that lowest capture moments coincide $$x_\alpha (\tau) = y_{j_\alpha}(\tau), \quad x_\alpha(s) \ne y_{j_\alpha}(s), \quad s \in [t_0, \tau), \quad \alpha \in \Lambda.$$ In this paper we obtain necessary and sufficient conditions for simultaneous multiple capture and nonstrict simultaneous multiple capture.

  5. В конечномерном евклидовом пространстве рассматривается задача преследования группой преследователей группы убегающих, описываемая системой вида
    $$\dot z_{ij} = u_i - v_j,\quad u_i, v_j \in V.$$
    Множество допустимых управлений - выпуклый компакт, целевые множества - начало координат. Целью группы преследователей является осуществление $r$-кратной поимки не менее $q$ убегающих. Дополнительно предполагается, что убегающие используют программные стратегии, а каждый преследователь может поймать не более одного убегающего. Получены необходимые и достаточные условия разрешимости задачи преследования. Для доказательства используется теорема Холла о системе различных представителей.

    In the finite-dimensional Euclidean space, the problem of a group of pursuers pursuing a group of evaders is considered, which is described by the system
    $$\dot z_{ij} = u_i - v_j,\quad u_i, v_j \in V.$$
    The set of admissible controls is a convex compact, and the target's sets are the origin of coordinates. The aim of the group of pursuers is to carry out an $r$-fold capture of at least $q$ evaders. Additionally, it is assumed that the evaders use program strategies and that each pursuer can catch no more than one evader. We obtain necessary and sufficient conditions for the solvability of the pursuit problem. For the proof we use the Hall theorem on the system of various representatives.

  6. Рассматривается линейное однородное автономное дескрипторное уравнение с дискретным временем $$B_0g(k+1)+\sum_{i=1}^mB_ig(k+1-i)=0,\quad k=m,m+1,\ldots,$$ c прямоугольными (в общем случае) матрицами $B_i.$ Такое уравнение возникает при исследовании задач управления системами со многими соизмеримыми запаздываниями в управлении: задачи 0-управляемости, задачи синтеза регулятора типа обратной связи, обеспечивающего успокоение решения исходной системы, задачи модальной управляемости (управляемости коэффициентов характеристического квазиполинома), задачи спектральной приводимости и задачи синтеза наблюдателей для двойственной системы наблюдения. Для изучаемого дескрипторного уравнения с дискретным временем на основе решения конечной цепочки однородных алгебраических систем построено описание подпространства начальных условий, для которых это уравнение разрешимо. Получено представление всех его решений в виде, позволяющем организовать вычислительный процесс для нахождения одного из решений этого уравнения. Изучены свойства этого уравнения, используемые в задачах синтеза регуляторов для непрерывных систем со многими соизмеримыми запаздываниями в управлении. Отличительной чертой представленного исследования изучаемого объекта является использование подхода, не требующего построения преобразований, приводящих матрицы исходного уравнения к различным каноническим формам.

    We consider a linear homogeneous autonomous descriptor equation with discrete time $$B_0g(k+1)+\sum_{i=1}^mB_ig(k+1-i)=0,\quad k=m,m+1,\ldots,$$ with rectangular (in general case) matrices $B_i$. Such an equation arises in the study of the most important control problems for systems with many commensurate delays in control: the 0-controllability problem, the synthesis problem of the feedback-type regulator, which provides calming to the solution of the original system, the modal controllability problem (controllability of the coefficients of characteristic quasipolynomial), the spectral reduction problem and the problem of observers' synthesis for a dual surveillance system. For the studied descriptor equation with discrete time, a subspace of initial conditions for which this equation is solvable is described based on the solution of a finite chain of homogeneous algebraic systems. The representation of all its solutions is obtained in the form of some explicit recurrent formula convenient for the organization of the computational process. Some properties of this equation that are used in the problems of regulator synthesis for continuous systems with many commensurate delays in control are studied. A distinctive feature of the presented study of the object under consideration is the use of an approach that does not require the construction of transformations reducing the matrices of the original equation to different canonical forms.

  7. Для линейных автономных систем нейтрального типа с одним запаздыванием в состоянии разработан метод построения линейных дифференциально-разностных регуляторов с обратной связью, обеспечивающих модальную управляемость. При этом отдельно выделены случаи непрерывного и абсолютно непрерывного решений. Предложено обобщение этих результатов на системы указанного типа с многими соизмеримыми запаздываниями.

    Khartovskii V.E., Pavlovskaya A.T.
    To the problem of modal control for linear systems of neutral type, pp. 146-155

    For linear autonomous systems of neutral type with one delay in the state, we develop the method of construction of linear difference-differential feedback controls that ensure modal controllability. In this case, we distinguish the cases of continuous and absolutely continuous solutions. The generalization of these results to a system of this type with multiple commensurate delays is suggested.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref