Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'nondifferentiable optimization':
Найдено статей: 2
  1. Рассматривается выпуклая задача оптимального управления для параболического уравнения со строго равномерно выпуклым целевым функционалом, с граничным управлением и с распределенными поточечными фазовыми ограничениями типа равенства и неравенства. Образы задающих поточечные фазовые ограничения операторов вкладываются в лебегово пространство суммируемых с $s$-й степенью функций при $s\in(1,2)$. В свою очередь, граничное управление принадлежит лебегову пространству с показателем суммируемости $r\in (2,+\infty)$. Основными результатами работы в рассматриваемой задаче оптимального управления с поточечными фазовыми ограничениями являются регуляризованные, или, другими словами, устойчивые к ошибкам исходных данных, секвенциальные принцип Лагранжа в недифференциальной форме и поточечный принцип максимума Понтрягина.

    A convex optimal control problem is considered for a parabolic equation with a strictly uniformly convex cost functional, with boundary control and distributed pointwise state constraints of equality and inequality type. The images of the operators that define pointwise state constraints are embedded into the Lebesgue space of integrable with $s$-th degree functions for $s\in(1,2)$. In turn, the boundary control belongs to Lebesgue space with summability index $r\in (2,+\infty)$. The main results of this work in the considered optimal control problem with pointwise state constraints are the two stable, with respect to perturbation of input data, sequential or, in other words, regularized principles: Lagrange principle in nondifferential form and Pontryagin maximum principle.

  2. Для вещественнозначных функций $f$, заданных на подмножествах вещественных линейных пространств, введены понятия крайних подаргументов и крайних надаргументов, а также понятия естественных выпуклой $\check{f}$ и вогнутой $\hat{f}$ оболочек. Показано, что для любой строго выпуклой функции $g$ любая точка глобального максимума функции $f+g$ является крайним подаргументом для функции $f$. Аналогичный результат получен для функций вида $f/v + g$. На основе этих результатов предложен метод, облегчающий поиск глобальных экстремумов функций в некоторых случаях. Доказано, что при определенных условиях функции $f/v+g$ и $\hat{f}/v+g$ имеют одинаковые глобальные максимумы и одинаковые точки глобального максимума. Приведены необходимые и достаточные условия естественности выпуклой оболочки функции. Указано достаточное условие того, что при сужении области определения $f$, значения вогнутой оболочки $\hat{f}$ на суженной области не меняются. Найдены крайние под- и надаргументы для непрерывной нигде не дифференцируемой функции Кобаяши-Грея-Такаги $K(x)$ на отрезке $[0;1]$. Кроме того, на отрезке $[0;1]$ вычислены глобальные экстремумы функции $K(x)/\cos{x}$ и глобальный максимум функции $K(x)-\sqrt{x(1-x)}$. Работа снабжена примерами и проиллюстрирована графиками.

    For real-valued functions $f$, defined on subsets of real linear spaces, the notions of extreme subarguments, extreme epiarguments, natural convex $\check{f}$ and natural concave $\hat{f}$ envelopes are introduced. It is shown that for any strictly convex function $g$, any point of the global maximum of the function $f+g$ is an extreme subargument for the function $f$. A similar result is obtained for functions of the form $f/v + g$. Based on these results, a method is proposed, that facilitates the search for global extrema of functions in some cases. It is proved that under certain conditions the functions $f/v+g$ and $\hat{f}/v+g$ have the same global maximum and the same points of the global maximum. Necessary and sufficient conditions for the naturalness of the convex envelope of function are given. A sufficient condition for the invariance of values of the concave envelope $\hat{f}$ during narrowing the domain of $f$ is established. Extreme sub- and epiarguments for continuous nowhere differentiable Gray-Takagi function $K(x)$ of Kobayashi on the segment $[0;1]$ are found. Moreover, the global extrema of the function $K(x)/\cos{x}$ and the global maximum of the function $K(x)-\sqrt{x(1-x)}$ on $[0;1]$ are calculated. The article is provided with examples and graphic illustrations.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref