Текущий выпуск Выпуск 2, 2017 Том 27

Регуляризация принципа максимума Понтрягина в задаче оптимального граничного управления для параболического уравнения с фазовыми ограничениями в лебеговых пространствах

 pdf (342K)

Рассматривается выпуклая задача оптимального управления для параболического уравнения со строго равномерно выпуклым целевым функционалом, с граничным управлением и с распределенными поточечными фазовыми ограничениями типа равенства и неравенства. Образы задающих поточечные фазовые ограничения операторов вкладываются в лебегово пространство суммируемых с $s$-й степенью функций при $s\in(1,2)$. В свою очередь, граничное управление принадлежит лебегову пространству с показателем суммируемости $r\in (2,+\infty)$. Основными результатами работы в рассматриваемой задаче оптимального управления с поточечными фазовыми ограничениями являются регуляризованные, или, другими словами, устойчивые к ошибкам исходных данных, секвенциальные принцип Лагранжа в недифференциальной форме и поточечный принцип максимума Понтрягина.

Ключевые слова: оптимальное граничное управление, параболическое уравнение, секвенциальная оптимизация, двойственная регуляризация, устойчивость, поточечное фазовое ограничение в лебеговом пространстве, принцип Лагранжа, принцип максимума Понтрягина
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2017, т. 27, вып. 2, с. 162-177
DOI: 10.20537/vm170202

Regularization of the Pontryagin maximum principle in the problem of optimal boundary control for a parabolic equation with state constraints in Lebesgue spaces

A convex optimal control problem is considered for a parabolic equation with a strictly uniformly convex cost functional, with boundary control and distributed pointwise state constraints of equality and inequality type. The images of the operators that define pointwise state constraints are embedded into the Lebesgue space of integrable with $s$-th degree functions for $s\in(1,2)$. In turn, the boundary control belongs to Lebesgue space with summability index $r\in (2,+\infty)$. The main results of this work in the considered optimal control problem with pointwise state constraints are the two stable, with respect to perturbation of input data, sequential or, in other words, regularized principles: Lagrange principle in nondifferential form and Pontryagin maximum principle.

Keywords: optimal boundary control, parabolic equation, sequential optimization, dual regularization, stability, pointwise state constraint in the Lebesgue space, Lagrange principle, Pontryagin's maximum principle
Citation in English: Bulletin of Udmurt University. Mathematics, Mechanics, Computer Science, 2017, vol. 27, issue 2, pp. 162-177

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref