Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'nonintegrability':
Найдено статей: 3
  1. Проведен обзор моделей, приводящих к неинтегрируемому уравнению Островского и его обобщениям, не имеющим точных уединенно-волновых решений. Приведен краткий вывод уравнения Островского для продольных волн в геометрически нелинейном стержне, лежащем на упругом основании. Показано, что в случае осесимметричного распространения пучка продольных волн в физически нелинейной цилиндрической оболочке, взаимодействующей с нелинейно-упругой средой, для компоненты перемещения возникает обобщенное уравнение Буссинеска-Островского шестого порядка. Построено точное кинкоподобное решение этого уравнения, установлена связь с обобщенным нелинейным уравнением Шрёдингера и найдено решение последнего уравнения в форме устойчивой солитоноподобной бегущей волны с монотонно затухающими или колебательными хвостами.

    An overview of models that lead to the nonintegrable Ostrovsky equation and its generalizations having no exact solitary-wave solutions is given. A brief derivation of the Ostrovsky equation for longitudinal waves in a geometrically nonlinear rod lying on an elastic foundation is performed. It is shown that in the case of axially symmetric propagation of longitudinal waves in a physically nonlinear cylindrical shell interacting with a nonlinear elastic medium the displacement component obeys the generalized sixth-order Boussinesq-Ostrovsky equation. We construct an exact kink-like solution of this equation, establish a connection with the generalized nonlinear Schrödinger (GNLS) equation and find the steady travelling wave solution of the GNLS in the form of simple soliton with monotonic or oscillating tails.

  2. В данной работе исследуется качение сферического волчка с осесимметричным распределением масс по гладкой горизонтальной плоскости, совершающей периодические вертикальные колебания. Для рассматриваемой системы получены уравнения движения и законы сохранения. Показано, что система допускает два положения равновесия, соответствующих равномерным вращениям волчка относительно вертикально расположенной оси симметрии. Положение равновесия устойчиво, когда центр масс расположен ниже геометрического центра и неустойчиво, если центр масс расположен выше него. Проведена редукция уравнений движения к системе с полутора степенями свободы. Рассматриваемая редуцированная система представлена в виде малого возмущения задачи о движении волчка Лагранжа. При помощи метода Мельникова показано, что устойчивая и неустойчивая ветви сепаратрисы трансверсально пересекаются между собой, что говорит о неинтегрируемости рассматриваемой задачи. Приведены результаты компьютерного моделирования динамики волчка вблизи неустойчивого положения равновесия.

    This paper investigates the rolling motion of a spherical top with an axisymmetric mass distribution on a smooth horizontal plane performing periodic vertical oscillations. For the system under consideration, equations of motion and conservation laws are obtained. It is shown that the system admits two equilibrium points corresponding to uniform rotations of the top about the vertical symmetry axis. The equilibrium point is stable when the center of mass is located below the geometric center, and is unstable when the center of mass is located above it. The equations of motion are reduced to a system with one and a half degrees of freedom. The reduced system is represented as a small perturbation of the problem of the Lagrange top motion. Using Melnikov’s method, it is shown that the stable and unstable branches of the separatrix intersect transversally with each other. This suggests that the problem is nonintegrable. Results of computer simulation of the top dynamics near the unstable equilibrium point are presented.

  3. В данной работе рассматриваются системы материальных точек в евклидовом пространстве, взаимодействующих как друг с другом, так и с внешним полем. Для случая произвольного парного взаимодействия между телами, зависящего только от их взаимного расстояния, указаны новые интегралы, образующие вектор галилеева момента. Приведена соответствующая алгебра интегралов, которую образуют интегралы импульса, момента импульса игалилеева момента.

    Рассмотрены  системы частиц, взаимодействие между которыми описывается однородным потенциалом степени однородности α=-2. Для этих систем приведена наиболее общая форма дополнительного первого интеграла движения, называемого нами интегралом Якоби. Указана новая нелинейная алгебра интегралов, включающая интеграл Якоби. Систематически описана новая процедура редукции и возможность ее применения в динамике для понижения
    порядка гамильтоновых систем.

    В статье также приводится ряд новых интегрируемых и суперинтегрируемых систем, являющихся обобщением классических. Приведен ряд обобщений тождества Лагранжа для систем с однородным потенциалом степени однородности α=-2, а также с помощью компьютерных экспериментов доказана неинтегрируемость задачи Якоби на плоскости.

    Systems of material points interacting both with one another and with an external field are considered in Euclidean space. For the case of arbitrary binary interaction depending solely on the mutual distance between the bodies, new integrals are found, which form a Galilean momentum vector. A corresponding algebra of
    integrals constituted by the integrals of momentum, angular momentum, and Galilean momentum is presented. Particle systems with a particle-interaction potential homogeneous of degree α=-2 are considered. The most general form of the additional integral of motion, which we term the Jacobi integral, is presented for such systems. A new nonlinear algebra of integrals including the Jacobi integral is found. A systematic description is given to a new reduction procedure and possibilities of applying it to dynamics with the aim of lowering the order of Hamiltonian systems.

    Some new integrable and superintegrable systems generalizing the classical ones are also described. Certain generalizations of the Lagrangian identity for systems with a particle-interaction potential homogeneous of degree α=-2 are presented. In addition, computational experiments are used to prove the nonintegrability of the Jacobi problem on a plane.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref