Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Для данного уравнения рассмотрена периодическая краевая задача. У задачи существует счетное число периодических по временной переменной плоских волн. Исследован вопрос об их устойчивости и бифуркациях. Все результаты получены аналитически и основаны на асимптотических методах нелинейной динамики.
Bifurcation of autowaves of generalized cubic Schrödinger equation with three independent variables, pp. 23-34Periodic boundary value problem the name of which is given in the title of this article is considered in this work. There is a countable number of plane waves which are periodic on according to time variable. The question of their stability and bifurcation has been examined. Each of them turned out to bifurcate invariant tors of 2,3,4 dimensions, including asymptotically stable ones. Features which make them different from the analogous problem when the number of space variables equals 1 or 2 are also shown. In particular we have shown parameter ranges when precritic bifurcation of saddle tors is possible and revealed the cases of realization of stable regimes with sharpening the latter is illustrated by figures. All these results have been obtained analytically and are based on asymptotic methods of nonlinear dynamic.
-
Устойчивые уединенно-волновые решения обобщенного уравнения Буссинеска-Островского шестого порядка, с. 338-347Проведен обзор моделей, приводящих к неинтегрируемому уравнению Островского и его обобщениям, не имеющим точных уединенно-волновых решений. Приведен краткий вывод уравнения Островского для продольных волн в геометрически нелинейном стержне, лежащем на упругом основании. Показано, что в случае осесимметричного распространения пучка продольных волн в физически нелинейной цилиндрической оболочке, взаимодействующей с нелинейно-упругой средой, для компоненты перемещения возникает обобщенное уравнение Буссинеска-Островского шестого порядка. Построено точное кинкоподобное решение этого уравнения, установлена связь с обобщенным нелинейным уравнением Шрёдингера и найдено решение последнего уравнения в форме устойчивой солитоноподобной бегущей волны с монотонно затухающими или колебательными хвостами.
нелинейные эволюционные уравнения, уединенно-волновые решения, обобщенное нелинейное уравнение Шрёдингера
Steady solitary wave solutions of the generalized sixth-order Boussinesq-Ostrovsky equation, pp. 338-347An overview of models that lead to the nonintegrable Ostrovsky equation and its generalizations having no exact solitary-wave solutions is given. A brief derivation of the Ostrovsky equation for longitudinal waves in a geometrically nonlinear rod lying on an elastic foundation is performed. It is shown that in the case of axially symmetric propagation of longitudinal waves in a physically nonlinear cylindrical shell interacting with a nonlinear elastic medium the displacement component obeys the generalized sixth-order Boussinesq-Ostrovsky equation. We construct an exact kink-like solution of this equation, establish a connection with the generalized nonlinear Schrödinger (GNLS) equation and find the steady travelling wave solution of the GNLS in the form of simple soliton with monotonic or oscillating tails.
-
Пусть $U$ — множество допустимых управлений, $T>0$ и задана шкала банаховых пространств $W[0;\tau]$, $\tau\in(0;T]$, такая, что множество сужений функций из $W=W[0;T]$ на $[0;\tau]$ совпадает с $W[0;\tau]$; $F[.;u]\colon W\to W$ — управляемый вольтерров оператор, $u\in U$. Ранее для операторного уравнения $x=F[x;u]$, $x\in W$, автором была введена система сравнения в форме функционально-интегрального уравнения в пространстве $\mathbf{C}[0;T]$. Было установлено, что для сохранения (относительно малых вариаций правой части) глобальной разрешимости операторного уравнения достаточно сохранения глобальной разрешимости указанной системы сравнения, а также установлены соответствующие достаточные условия. В данной статье рассматриваются дальнейшие примеры приложения этой теории: нелинейное волновое уравнение, сильно нелинейное волновое уравнение, нелинейное уравнение теплопроводности, сильно нелинейное параболическое уравнение.
эволюционное вольтеррово уравнение второго рода общего вида, функционально-интегральное уравнение, система сравнения, сохранение глобальной разрешимости, единственность решения, нелинейное волновое уравнение, нелинейное параболическое уравнениеLet $U$ be the set of admissible controls, $T>0$, and let $W[0;\tau]$, $\tau\in(0;T]$, be a scale of Banach spaces such that the set of restrictions of functions from $W=W[0;T]$ to $[0;\tau]$ coincides with $W[0;\tau]$; let $F[.;u]\colon W\to W$ be a controlled Volterra operator, $u\in U$. Earlier, for the operator equation $x=F[x;u]$, $x\in W$, the author introduced a comparison system in the form of a functional integral equation in the space $\mathbf{C}[0;T]$. It was established that to preserve (under small perturbations of the right-hand side) the global solvability of the operator equation, it is sufficient to preserve the global solvability of the specified comparison system, and the corresponding sufficient conditions were established. In this paper, further examples of application of this theory are considered: nonlinear wave equation, strongly nonlinear wave equation, nonlinear heat equation, strongly nonlinear parabolic equation.
-
Мы исследуем эволюцию осесимметричного двухслойного медленного течения вязкой жидкости со свободной границей, которое создается начальным рельефом границ слоев и скоростями на нижней границе. Каждый слой имеет постоянную плотность и вязкость. Предполагается, что верхний слой имеет меньшую плотность, чем нижний. На основе уравнений Рейнольдса построена система нелинейных параболических уравнений относительно поверхности и границы раздела слоев для описания этого течения. Принимая безразмерный скачок плотностей между слоями как малый параметр, мы применяем метод асимптотических разложений, чтобы выделить главное приближение для медленной эволюции уравнений движения на больших временах. Получено асимптотическое уравнение, связывающее смещения поверхности и границы раздела слоев со скоростями на нижней границе. На основе этого уравнения разработан алгоритм для расчета полей скоростей в слоях на больших временах. Для наглядного представления течения используются линии тока. Численные результаты показали устойчивость линий тока в верхнем слое при вариации скорости на нижней границе. В качестве геофизических приложений разработанный алгоритм используется для количественной оценки поля скоростей в коре под крупномасштабными кольцевыми структурами на Луне (верхний слой), создаваемого глубинными движениями в подстилающей мантии (нижний слой). Чтобы подтвердить достоверность результатов моделирования, мы сопоставляем рассчитанные поля скоростей с системами хребтов кольцевых структур, полученных из экспериментальных наблюдений. Модельное сравнение показало пространственную близость радиусов кольцевых хребтов и особых точек скорости течения на поверхности.
многослойное течение, длинноволновое приближение, уравнения Рейнольдса, нелинейная диффузия, кольцевые структуры
Modeling the velocity field of two-layered creeping flow and some geophysical applications, pp. 66-75We study the long-time evolution of axisymmetric free-surface two-layered creeping flow subject to the initial topography of its boundaries and bottom velocities. Each layer has uniform density and viscosity. The upper layer is assumed to have a smaller density than the lower layer. Based on lubrication approximation (the Reynolds equations) the nonlinear system of diffusion-type equations with respect to the surface and interface between the layers is obtained to describe this flow. Taking the dimensionless density contrast between the layers as a small parameter, we apply the method of asymptotic expansions to extract leading-term approximation for the slowly varying large-time evolution of the governing equations. An asymptotic equation relating both surface and interface displacement to the bottom velocities is derived. Based on this equation, we develop the algorithm to calculate velocity fields within layers for large time. Streamlines are used to visualize the flow. Numerical results reveal stability of the streamlines in the upper layer under variation of the bottom velocity. As geophysical applications, the developed algorithm is used to evaluate the velocity field in the crust (the upper layer) beneath the large-scale lunar multi-ring basins influenced by deep movements in the underlying mantle (the lower layer). To validate the results of modeling, we compare the calculated velocity fields with basin ridge systems obtained by experimental observations. The model comparison has shown proximity of radii of basin rings and critical points of the surface velocity.
-
Разработана осесимметрическая модель на основе упрощенных уравнений вязкой жидкости для исследования двухслойного течения со свободной границей, создаваемого подъемом жесткого блока фундамента. Получено численное решение полной нелинейной системы и выполнен анализ малых возмущений движения границ слоев. Основной результат заключается в том, что кольцевая структура образуется на поверхности жидкости, если плотность нижнего слоя больше, чем у верхнего. Предлагаемая модель может представлять интерес для геофизики при изучении процесса образования крупномасштабных кольцевых структур на поверхности Земли и других планет.
стоксово течение, многослойные течения, длинноволоновое приближение, нелинейная диффузия, кольцевые структуры
An axisymmetric model of the ring pattern formation in free-surface two-layered creeping flow, pp. 63-74The axisymmetric model based on simplified equations of incompressible viscous fluid is developed to investigate the evolution of free-surface two-layered creeping flow subjected by the uplift of the substrate's block. We numerically solve the nonlinear governing equations and perform the small-amplitude analysis of the behavior of both fluid interfaces. The main result is that a ring pattern does occur on the upper surface provided that the density of the lower layer is greater then that of the upper one. The presented model may be of interest for geophysics to study large-scale ring structures on the Earth and other solid planets.
-
Пусть $H$ — банахово пространство, $T>0$, $\sigma\in[1;\infty]$ и задана шкала банаховых пространств $W[0;\tau]$, $\tau\in(0;T)$, индуцированная сужениями из пространства $W=W[0;T]$; $\mathcal{F}\colon L_\sigma(0,T;H)\to W$ — вольтерров оператор; $f[u]\colon W\to L_\sigma(0,T;H)$ — управляемый вольтерров оператор, зависящий от управления $u\in U$. Рассматривается уравнение вида $$ x=\mathcal{F}\bigl( f[u](x)\bigr),\quad x\in W. $$ Для этого уравнения устанавливаются признаки тотально (по множеству допустимых управлений) глобальной разрешимости при условии глобальной разрешимости некоторого функционально-интегрального неравенства в пространстве $\mathbb{R}$. Во многих частных случаях указанное неравенство может быть конкретизировано как задача Коши для обыкновенного дифференциального уравнения. Фактически, развивается аналогичный результат, доказанный автором ранее, на этот раз при других, более удобных для практического использования условиях (хотя и в более частной постановке). Отдельно рассматриваются случаи: 1) компактного вложения пространств и непрерывности операторов $\mathcal{F}$, $f[u]$ (такой подход автором ранее не использовался); 2) выполнения локально-интегрального аналога условия Липшица относительно указанных операторов. Во втором случае доказывается также единственность решения. В первом случае применяется теорема Шаудера, во втором — технология продолжения решения по времени, то есть продолжения вдоль вольтерровой цепочки. В качестве примера рассматривается нелинейное волновое уравнение в пространстве $\mathbb{R}^n$.
нелинейное эволюционное вольтеррово уравнение в банаховом пространстве, нелинейное волновое уравнение, тотально глобальная разрешимость, единственность решенияLet $H$ be a Banach space, $T>0$, $\sigma\in[1;\infty]$ and let $W[0;\tau]$, $\tau\in(0;T)$, be the scale of Banach spaces which is induced by restrictions from a space $W=W[0;T]$; $\mathcal{F}\colon L_\sigma(0,T;H)\to W$ be a Volterra operator (an operator with Volterra property); $f[u] \colon W\to L_\sigma(0,T;H)$ be a controlled Volterra operator depending on a control $u\in U$. We consider the equation as follows $$x=\mathcal{F}\bigl( f[u](x)\bigr),\quad x\in W.$$ For this equation we establish signs of totally (with respect to a set of admissible controls) global solvability subject to global solvability of some functional integral inequality in the space $\mathbb{R}$. In many particular cases the above inequality may be realized as the Cauchy problem associated with an ordinary differential equation. In fact, the analogous result which was obtained by the author formerly is developed, this time under other hypotheses, more convenient for practical usage (although in more particular statement). Separately, we consider the cases of compact embedding of spaces and continuity of the operators $\mathcal{F}$, $f[u]$ (such an approach has not been used by the author formerly), from one hand, and of local integral analogue of the Lipschitz condition with respect to that operators, from another hand. In the second case we prove also the uniqueness of solution. In the first case we use Schauder theorem and in the second case we apply the technique of solution continuation along with the time axis (id est continuation along with a Volterra chain). Finally, as an example, we consider a nonlinear wave equation in the space $\mathbb{R}^n$.
-
Нелинейная модель осесимметричного течения двухслойной вязкой жидкости со свободной поверхностью, с. 91-100На основе упрощенных уравнений Навье-Стокса в длинноволновом приближении построена нелинейная модель двухслойного течения вязкой жидкости со свободной границей, создаваемого начальным рельефом границ слоев. Используя метод малого параметра, исследуется эволюция течения на больших временах и определяется зависимость между движением поверхности и границы раздела жидкости. Полученные результаты применяются для расчета профиля границы кора-мантия под крупномасштабной кольцевой структурой на Луне.
стоксово течение, многослойное течение, длинноволновое приближение, нелинейная диффузия, кольцевые структурыThe nonlinear model based on the long-wave approximation of the Navier-Stokes equations is developed to investigate the evolution of free-surface two-layered creeping flow subjected by the initial topography of the surface and interface between layers. Using the method of asymptotic expansions for the governing equations, we study a long-time evolution of the flow and reveal the relation between the surface and interface displacements. The obtained results are applied to calculate the profile of the crust-mantle interface beneath the large-scale lunar basin.
-
О вольтерровом обобщении метода монотонизации для нелинейных функционально-операторных уравнений, с. 84-99Пусть n,m, ℓ, s ∈ N – заданные числа, П ⊂ Rn – измеримое по Лебегу множество, X, Z – банаховы идеальные пространства измеримых на П функций. Рассматривается нелинейное операторное уравнение:
x = θ + AF[x], x ∈ Xℓ, (1)
где A : Zm → Xℓ – линейный ограниченный оператор, F : Xℓ → Zm – некоторый оператор. Уравнение (1) является естественной формой описания широкого класса сосредоточенных и распределенных систем. Ранее В.П. Политюковым был предложен метод монотонизации для обоснования разрешимости уравнения вида (1) и получения поточечных оценок решения. Суть его состояла в том, что разрешимость уравнения (1) доказывалась (помимо прочих условий) для случая, когда I) оператор F допускал поправку вида G = λI до монотонного оператора F[x] = F[θ+x]+G[x] такую, что II) (I +AG)−1A > 0 (λ > 0, I тождественный оператор). Как видно из примеров, приведенных в данной статье, условия I) и II) могут противоречить друг другу, что сужает сферу применения метода. Основной результат статьи в том, что в случае оператора A, обладающего свойством вольтерровости, естественным для эволюционных уравнений, требование монотонизируемости I) можно заменить требованием оценки оператора F на некотором конусном отрезке сверху и снизу через линейный оператор G плюс фиксированный элемент. Доказывается, что для глобальной разрешимости начально-краевой задачи, связанной с полулинейным эволюционным уравнением, достаточно, чтобы аналогичная начально-краевая задача, связанная с линейным уравнением, полученным путем оценки правой части исходного полулинейного уравнения на некотором конусном отрезке, имела положительное решение. В качестве иллюстрации рассматривается применение указанных результатов к системе Гурса–Дарбу, задаче Коши для волнового уравнения и первой краевой задаче для уравнения диффузии.
On Volterra type generalization of monotonization method for nonlinear functional operator equations, pp. 84-99Let n,m, ℓ, s ∈ N be given numbers, П ⊂ Rn be a set measurable by Lebesgue and X, Z be some Banach ideal spaces of functions measurable on . We consider a nonlinear operator equation of the form as follows:
x = θ + AF[x], x ∈ Xℓ, (1)
where A : Zm → Xℓ is bounded linear operator, F : F : Xℓ → Zm is some operator. Equation (1) is a natural form of lumped and distributed parameter systems from a wide enough class. Formerly, by V.P. Polityukov it was suggested monotonization method for justification of solvability of equation (1) and obtaining pointwise estimations for solutions. The matter of this method consisted in that solvability of equation (1) was proved (besides other conditions) under following: I) operator F allows some correction of the form G = λI to monotone operator F[x] = F[θ+x]+G[x] such that II) (I +AG)−1A > 0 (λ > 0, I is identity operator). As our examples show, conditions I) and II) may be contradictory to each other, that narrows a sphere of application of the method. The main result of the paper is that for the case of operator A, possessing the Volterra property, which is natural for evolutionary equations, the requirement I) of ability to be monotonized can be replaced by the requirement of some upper and lower estimates for operator F on some cone segment through linear operator G and additional fixed element. We prove that for global solvability of a boundary value problem associated with a semilinear evolutionary equation it is sufficient that analogous boundary value problem associated with linear equation, derived from the original equation by estimating of a right-hand side on some cone segment, have a positive solution. The application of results obtained is illustrated by Goursat–Darboux system, Cauchy problem associated with wave equation and first boundary value problem associated with diffusion equation.
-
Асимптотическое исследование трехслойного течения вязкой жидкости и некоторые геофизические приложения, с. 107-115Разработана нелинейная модель трехслойного течения со свободной границей на основе упрощенных уравнений вязкой жидкости в длинноволновом приближении. Проведено асимптотическое исследование модели, которое показало существование двух различных режимов эволюции течения на малых и больших временах. Получено уравнение, связывающее смещения границ слоев на больших временах, не зависящее от предыстории течения. Модельные результаты используются для изучения поведения глубинной границы под крупномасштабной кольцевой структурой на Луне в зависимости от изменения геометрических физических параметров модели.
многослойные течения, длинноволновое приближение, теория смазки, нелинейная диффузия, кольцевые структуры.The nonlinear model based on the long-wave approximation of the Navier–Stokes equations is developed to study the free-surface three-layered creeping flow. An asymptotic study of the governing equations reveals two different modes of evolution at a short and long time. The relation between layers’ boundaries is obtained that is independent of a pre-history of the flow. The obtained results are applied to study a behavior of the deep interface beneath the large-scale lunar basin under the variation of geometrical and physical model’s parameters.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.