Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Изучается вариационный подход к постановке и решению задачи приближения функций квазиполиномами решениями однородных, автономных линейных разностных или дифференциальных уравнений.
линейные автономные дифференциальные и разностные уравнения, ортогональное проектирование, сглаживание, фильтрация, прогнозирование, процесс обновления, быстрые рекуррентные алгоритмы.
On one variational smoothing problem, pp. 9-22We study the variational approach to setting and solving of the function approximating problem by quasipolynomials which are the solutions of the homogeneous autonomous linear difference or differential equations.
-
О кубе и проекциях подпространства, с. 402-415Рассмотрено взаимное расположение вершин единичного многомерного куба, аффинного подпространства и его ортогональных проекций на координатные подпространства. Даны верхние и нижние ограничения размерности подпространства, при которых некоторая ортогональная проекция всегда сохраняет отношение инцидентности подпространства и вершин куба. Также рассмотрены некоторые косоугольные проекции. Кроме того, дан краткий обзор истории развития многомерной начертательной геометрии. Аналитические и синтетические методы в геометрии обособились с XVII века. Хотя анализ и синтез тесно переплетаются, с этого времени многие геометры и инженеры делают тонкое различие. Указания на идею о многомерном пространстве можно найти в работах XVIII века, но настоящее развитие началось с середины XIX века. Вскоре такие работы появились и на русском языке. Далее многие математики обобщали свои теории на многомерный случай. Наши новые результаты получены аналитическими и синтетическими методами. Они иллюстрируют сложность задач псевдобулева программирования, поскольку снижение размерности задачи методом ортогонального проектирования встречает препятствие в худшем случае.
On a cube and subspace projections, pp. 402-415We consider the arrangement of vertices of a unit multidimensional cube, an affine subspace, and its orthogonal projections onto coordinate subspaces. Upper and lower bounds on the subspace dimension are given under which some orthogonal projection always preserves the incidence relation between the subspace and cube vertices. Some oblique projections are also considered. Moreover, a brief review of the history of the development of multidimensional descriptive geometry is given. Analytic and synthetic methods in geometry diverged since the 17th century. Although both synthesis and analysis are tangled, from this time forth many geometers as well as engineers keep up a nice distinction. One can find references to the idea of higher-dimensional spaces in the 18th-century works, but proper development has been since the middle of the 19th century. Soon such works have appeared in Russian. Next, mathematicians generalized their theories to many dimensions. Our new results are obtained by both analytic and synthetic methods. They illustrate the complexity of pseudo-Boolean programming problems because reducing the problem dimension by orthogonal projection meets obstacles in the worst case.
-
Изучаются свойства дискретной вариационной задачи динамической аппроксимации в комплексном евклидовом (L + 1)-мерном пространстве E. Она обобщает известные задачи среднеквадратической полиномиальной аппроксимации функций, заданных своими отсчетами в конечном интервале. В рассматриваемой задаче аппроксимация последовательности y = {yi}L0 отсчетов функции y(t) ∈ L2[0, T], T = Lh на сетке Ih осуществляется решениями однородных линейных дифференциальных или разностных уравнений заданного порядка n с постоянными, но, возможно, неизвестными коэффициентами. Тем самым показано, что в последнем случае задача аппроксимации включает в себя и задачу идентификации. Анализ ее особенностей - основная тема статьи. Ставится задача нахождения вектора коэффициентов разностного уравнения Σn0 ŷi+k αi = 0, где k = 0,L − n. Оптимизируются коэффициенты и начальные условия переходного процесса y этого уравнения. Цель оптимизации - наилучшая аппроксимация исследуемого динамического процесса y ∈ E. Критерий аппроксимации минимум величины ||y − ŷ||2E. Показано, что изучаемая вариационная задача сводится к задачам проектирования в E вектора y на ядра разностных операторов с неизвестными коэффициентами α ∈ ω ⊂ S ⊂ En+1. Здесь α - направление, S - сфера или гиперплоскость. Показана связь изучаемой задачи с задачами дискретизации и идентифицируемости. Тогда координаты вектора y ∈ E есть точное решение дифференциального уравнения на сетке Ih и y = ŷ. Дано сравнение изучаемой задачи вариационной идентификации с алгебраическими методами идентификации. Показано, что ортогональные дополнения к ядрам разностных операторов всегда имеют теплицев базис. Это приводит к быстрым проекционным алгоритмам вычислений. Показано, что задача нахождения оптимального вектора α сводится к задаче безусловной минимизации функционала идентификации, зависящего от направления в En+1. Предложена итерационная процедура его минимизации на сфере с широкой областью и высокой скоростью сходимости. Изучаемую вариационную задачу можно применять при математическом моделировании в управлении и научных исследованиях. При этом на конечных интервалах может использоваться, в частности, возможность кусочно-линейной динамической аппроксимации сложных динамических процессов разностными и дифференциальными уравнениями указанного типа.
вариационная идентификация, алгебраическая идентификация, кусочно–линейная динамическая аппроксимация, ортогональная регрессия, неградиентная оптимизацияSome properties of the discrete variational problem of the dynamic approximation in the complex Euclidean (L + 1)-dimensional space are studied here. It generalizes familiar problems of the mean square polynomial approximation of the functions given on the finite interval in accordance with their references. In the problem under consideration sequence approximation y = {yi}L0 of the references of the function y(t) ∈ L2[0, T], T = Lh on the lattice Ih is achieved by solving homogeneous linear differential equations or difference equations of the given order n with constant but possibly unknown coefficients. Thus, it is shown that in the latter case the approximation problem also includes the identification problem. The analysis of its properties is the main subject of the article. The problem is set to find vector of coefficients of difference equation Σn0 ŷi+k αi = 0, where k = 0,L − n. Coefficients and initial conditions of the transient process by of this equation are optimized. The optimization purpose is to achieve the best approximation of the dynamic process y ∈ E being considered here. The approximation criterion is a minimum of the quantity ||y − ŷ||2E. The variational problem under study is shown to be reduced to the problem of projecting vector y in E on the kernels of the difference operators with unknown coefficients α ∈ ω ⊂ S ⊂ En+1, where is a direction, S is a sphere or a hyperplane. The problem under study is shown to be related to the problems of the discretization and identifiability. In this case vector coordinates y ∈ E is an exact solution of differential equation on the lattice Ih and y = ŷ. The problem of the variational identification is compared with algebraic methods of identification. The orthogonal complement to the kernels of the difference operators are shown to always have Toeplitz basis. This results in fast projecting algorithms of computation. The problem of finding optimal vector α is shown to be reduced to the problem of the absolute minimization of the identification functional depending on the direction in En+1. The iterative procedure of its minimization on a sphere with wide domain and high speed of convergence is presented here. The variational problem considered here can be applied in mathematical modeling for control problem and research purposes. On the finite intervals, for example, it is possible to use piecewise-linear dynamic approximations of the complex dynamic processes with difference and differential equations of the specified type.
-
Модификация генератора шестигранных сеток, основанного на воксельном представлении геометрии, с. 468-479Рассматривается модификация ранее разработанного генератора шестигранных сеток из воксельных данных для построения моделей, заданных в форме CAD геометрии. Генератор относится к семейству методов, основанных на модификации регулярной сетки, и является универсальным с точки зрения возможности использования в качестве исходных данных как объемного (воксельного), так и STL-поверхностного представления геометрии модели. В настоящее время алгоритм работает с CAD моделями, описанными в хорошо известном формате STL. Вместе с тем, метод позволяет обрабатывать поверхности более высокого порядка, описанные в произвольном формате, если определены соответствующие процедуры для операций проекции и пересечения. Для определения начальной позиции узлов сетки используется полученный из STL-геометрии файл объемных данных в виде «знакопределенных полей расстояний». Разработана специальная процедура проецирования с целью адаптации построенной ортогональной сетки к границам модели. Данный подход обеспечивает аппроксимацию острых ребер и углов и выполняется перед любыми другими операциями построения сетки. Реализован дополнительный функционал для улучшения качества сетки, включающий вставку дополнительных граничных слоев, разбиение ячеек плохого качества и оптимизированное сглаживание узлов. Алгоритм протестирован на значительном числе моделей, часть из которых приведена в качестве примеров.
We consider a modification of the previously developed voxel-based mesh algorithm to generate models given in STL-geometry format. Proposed hexahedral mesh generator belongs to the family of grid methods, and is general-purpose in terms of a capability to use as source data both volume (voxel) and STL-surface representation of model geometry. For now, the algorithm works with CAD models described in the well-known STL format. However, it also allows to handle higher-order surface patches defined in an arbitrary format if appropriate procedures for projection and intersection operations will be specified. To define the initial position of mesh nodes, a “signed distance field” volume data file, obtained from the STL-geometry, is used. A special projection technique was developed to adapt constructed orthogonal mesh on the model's boundary. It provides an approximation of sharp edges and corners and is performed before running any other operations with the mesh. Finally, to improve the quality of the mesh, additional procedures were implemented, including boundary layers insertion, bad quality cells splitting, and optimization-based smoothing technique. The algorithm has been tested on a sufficient number of models, some of which are given as examples.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.