Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'projection':
Найдено статей: 18
  1. Изучается вариационный подход к постановке и решению задачи приближения функций квазиполиномами  решениями однородных, автономных линейных разностных или дифференциальных уравнений.

    Egorshin A.O.
    On one variational smoothing problem, pp. 9-22

    We study the variational approach to setting and solving of the function approximating problem by quasipolynomials which are the solutions of the homogeneous autonomous linear difference or differential equations.

  2. Бойков А.А., Селиверстов А.В.
    О кубе и проекциях подпространства, с. 402-415

    Рассмотрено взаимное расположение вершин единичного многомерного куба, аффинного подпространства и его ортогональных проекций на координатные подпространства. Даны верхние и нижние ограничения размерности подпространства, при которых некоторая ортогональная проекция всегда сохраняет отношение инцидентности подпространства и вершин куба. Также рассмотрены некоторые косоугольные проекции. Кроме того, дан краткий обзор истории развития многомерной начертательной геометрии. Аналитические и синтетические методы в геометрии обособились с XVII века. Хотя анализ и синтез тесно переплетаются, с этого времени многие геометры и инженеры делают тонкое различие. Указания на идею о многомерном пространстве можно найти в работах XVIII века, но настоящее развитие началось с середины XIX века. Вскоре такие работы появились и на русском языке. Далее многие математики обобщали свои теории на многомерный случай. Наши новые результаты получены аналитическими и синтетическими методами. Они иллюстрируют сложность задач псевдобулева программирования, поскольку снижение размерности задачи методом ортогонального проектирования встречает препятствие в худшем случае.

    Boykov A.A., Seliverstov A.V.
    On a cube and subspace projections, pp. 402-415

    We consider the arrangement of vertices of a unit multidimensional cube, an affine subspace, and its orthogonal projections onto coordinate subspaces. Upper and lower bounds on the subspace dimension are given under which some orthogonal projection always preserves the incidence relation between the subspace and cube vertices. Some oblique projections are also considered. Moreover, a brief review of the history of the development of multidimensional descriptive geometry is given. Analytic and synthetic methods in geometry diverged since the 17th century. Although both synthesis and analysis are tangled, from this time forth many geometers as well as engineers keep up a nice distinction. One can find references to the idea of higher-dimensional spaces in the 18th-century works, but proper development has been since the middle of the 19th century. Soon such works have appeared in Russian. Next, mathematicians generalized their theories to many dimensions. Our new results are obtained by both analytic and synthetic methods. They illustrate the complexity of pseudo-Boolean programming problems because reducing the problem dimension by orthogonal projection meets obstacles in the worst case.

  3. Изучаются свойства дискретной вариационной задачи динамической аппроксимации в комплексном евклидовом (L + 1)-мерном пространстве E. Она обобщает известные задачи среднеквадратической полиномиальной аппроксимации функций, заданных своими отсчетами в конечном интервале. В рассматриваемой задаче аппроксимация последовательности y = {yi}L0 отсчетов функции y(t) ∈ L2[0, T], T = Lh на сетке Ih осуществляется решениями однородных линейных дифференциальных или разностных уравнений заданного порядка n с постоянными, но, возможно, неизвестными коэффициентами. Тем самым показано, что в последнем случае задача аппроксимации включает в себя и задачу идентификации. Анализ ее особенностей - основная тема статьи. Ставится задача нахождения вектора коэффициентов разностного уравнения Σn0 ŷi+k αi = 0, где k = 0,Ln. Оптимизируются коэффициенты и начальные условия переходного процесса y этого уравнения. Цель оптимизации - наилучшая аппроксимация исследуемого динамического процесса yE. Критерий аппроксимации  минимум величины ||yŷ||2E. Показано, что изучаемая вариационная задача сводится к задачам проектирования в E вектора y на ядра разностных операторов с неизвестными коэффициентами αωSEn+1. Здесь α - направление, S - сфера или гиперплоскость. Показана связь изучаемой задачи с задачами дискретизации и идентифицируемости. Тогда координаты вектора yE есть точное решение дифференциального уравнения на сетке Ih и y = ŷ. Дано сравнение изучаемой задачи вариационной идентификации с алгебраическими методами идентификации. Показано, что ортогональные дополнения к ядрам разностных операторов всегда имеют теплицев базис. Это приводит к быстрым проекционным алгоритмам вычислений. Показано, что задача нахождения оптимального вектора α сводится к задаче безусловной минимизации функционала идентификации, зависящего от направления в En+1. Предложена итерационная процедура его минимизации на сфере с широкой областью и высокой скоростью сходимости. Изучаемую вариационную задачу можно применять при математическом моделировании в управлении и научных исследованиях. При этом на конечных интервалах может использоваться, в частности, возможность кусочно-линейной динамической аппроксимации сложных динамических процессов разностными и дифференциальными уравнениями указанного типа.

     

    Some properties of the discrete variational problem of the dynamic approximation in the complex Euclidean (L + 1)-dimensional space are studied here. It generalizes familiar problems of the mean square polynomial approximation of the functions given on the finite interval in accordance with their references. In the problem under consideration sequence approximation y = {yi}L0 of the references of the function y(t) ∈ L2[0, T], T = Lh on the lattice Ih is achieved by solving homogeneous linear differential equations or difference equations of the given order n with constant but possibly unknown coefficients. Thus, it is shown that in the latter case the approximation problem also includes the identification problem. The analysis of its properties is the main subject of the article. The problem is set to find vector of coefficients of difference equation Σn0 ŷi+k αi = 0, where k = 0,L − n. Coefficients and initial conditions of the transient process by of this equation are optimized. The optimization purpose is to achieve the best approximation of the dynamic process y ∈ E being considered here. The approximation criterion is a minimum of the quantity ||y − ŷ||2E. The variational problem under study is shown to be reduced to the problem of projecting vector y in E on the kernels of the difference operators with unknown coefficients  αωSEn+1, where is a direction, S is a sphere or a hyperplane. The problem under study is shown to be related to the problems of the discretization and identifiability. In this case vector coordinates y ∈ E is an exact solution of differential equation on the lattice Ih and y = ŷ. The problem of the variational identification is compared with algebraic methods of identification. The orthogonal complement to the kernels of the difference operators are shown to always have Toeplitz basis. This results in fast projecting algorithms of computation. The problem of finding optimal vector α is shown to be reduced to the problem of the absolute minimization of the identification functional depending on the direction in En+1. The iterative procedure of its minimization on a sphere with wide domain and high speed of convergence is presented here. The variational problem considered here can be applied in mathematical modeling for control problem and research purposes. On the finite intervals, for example, it is possible to use piecewise-linear dynamic approximations of the complex dynamic processes with difference and differential equations of the specified type.

     

  4. В статье рассматривается метод поиска и анализа текстурных компонент по прямым полюсным фигурам, с учетом симметрии кубического кристалла и образца. Алгоритм основан на представлении плоскостей отражения полярным комплексом векторов. Поиск ориентации происходит путем перемещения оси полярного комплекса по единичной полусфере, с последующим вращением полярного комплекса относительно этой оси. Далее определяется положение стереографических проекций векторов полярного комплекса на дискретной прямой полюсной фигуре. Ориентация считается найденной, если проекции по крайней мере трех векторов полярного комплекса попадают в область с ненулевой интенсивностью. Для каждой ориентации вычисляется вектор Родрига. Кроме того, определяются углы Эйлера и индексы Миллера. Текстурные компоненты выделяются в интерактивном режиме путем кластеризации данных в пространстве Родрига. С помощью ковариационной матрицы определяются собственные значения и векторы, характеризующие пространственное рассеяние текстурных компонент. В работе исследуются полюсные фигуры алюминиевой фольги после различных текстурных преобразований. Найденные текстурные компоненты представлены в пространстве Родрига.

    The article deals with the method of search and analysis of textural components using direct polar figures with due account for the symmetry of a cubic crystal and a sample. The algorithm is based on the representation of reflection planes by a polar complex of vectors. Search of orientation is made by moving the axis of a polar complex over the unit hemisphere followed by the rotation of a polar complex relative to this axis. Then the position of stereographic projections of the polar complex vectors on a discrete direct pole figure is determined. Orientation is found when the projections of at least three polar complex vectors are located in the area with non-zero intensity. For each orientation a Rodrigues vector is calculated. In addition, Euler angles and Miller indices are determined. Textural components are allocated interactively by clustering the data in Rodrigues space. Using the covariance matrix the eigenvalues and eigenvectors are determined characterizing the spatial dispersion of textural components. Pole figures of an aluminum foil after various textural transformations are investigated in the article. Obtained textural components are displayed in Rodrigues space.

  5. В настоящей работе сформулирована, поставлена и решена обратная граничная задача теплопроводности, при условии, что коэффициент теплопроводности является кусочно-постоянным. Эта задача занимает важное место в технике, так как теплонагруженные узлы технических конструкций покрывают теплоизолирующим слоем, термические характеристики которого сильно отличаются от термических характеристик самой конструкции. Подобные задачи находят свое применение при планировании стендовых испытаний летательных аппаратов. Современные композитные материалы решают эту проблему, предоставляя разработчикам целый ряд преимуществ. В ракетных двигателях внутреннюю стенку камеры внутреннего сгорания покрывают теплозащитным слоем, который изготавливают из композитных материалов. Благодаря свойствам этих материалов теплозащитный слой значительно снижает температуру стенки внутреннего сгорания. При решении обратной граничной задачи необходимо учитывать разницу коэффициентов теплопроводности составных частей композитных материалов, из которых изготавливают стенку камеры. Задача исследовалась с помощью ряда Фурье по собственным функциям для уравнения с разрывным коэффициентом. Доказано, что для решения обратной задачи применимо преобразование Фурье по переменной времени. Для решения обратной задачи использовано преобразование Фурье, позволяющее свести обратную задачу к операторному уравнению, которое было решено методом невязки.

    In the present paper, an inverse boundary value problem of thermal conduction is formulated, posed and solved, provided that the thermal diffusivity is piecewise constant. This task holds a prominent place in technology, since thermally loaded units of technical constructions are covered with a heat insulating layer, the thermal characteristics of which are very different from the thermal characteristics of the structure itself. Such tasks are used in the planning of bench tests of aircraft. Modern composite materials solve this problem, giving developers a number of advantages. In rocket engines, the inner wall of the internal combustion chamber is covered with a heat-shielding layer, which is made of composite materials. Due to the properties of these materials, the heat-shielding layer significantly reduces the temperature of the internal combustion wall. When solving an inverse boundary problem, it is necessary to take into account the difference in the thermal conductivity coefficients of the component parts of composite materials, which make the wall of the chamber. The problem was investigated using a Fourier series in eigenfunctions for an equation with a discontinuous coefficient. It is proved that for the solution of the inverse problem the Fourier transform with respect to $t$ is applicable. To solve the inverse problem, the Fourier transform was used, which made it possible to reduce the inverse problem to the operator equation, which was solved by the discrepancy method.

  6. Исследована выпуклость множеств достижимости по части координат нелинейных систем с интегральными ограничениями на управление на малых промежутках времени. Доказаны достаточные условия выпуклости, имеющие вид ограничений на асимптотику собственных чисел грамиана управляемости линеаризованной системы по части координат. В качестве примеров, в статье описаны две нелинейные системы третьего порядка, в одной из которых линеаризованная вдоль траектории, порожденной нулевым управлением, система неуправляема, а в другом управляема. Исследованы достаточные условия выпуклости проекций множеств достижимости. Проведено численное моделирование, продемонстрировавшее невыпуклость некоторых проекций даже для малых длин временного промежутка.

    We investigate the convexity of the reachable sets for some of the coordinates of nonlinear systems with integral constraints on the control at small time intervals. We have proved sufficient convexity conditions in the form of constraints on the asymptotics of the eigenvalues of the Gramian of the controllability of a linearized system for some of the coordinates. There are two nonlinear third-order systems under study as examples. The system linearized along a trajectory generated by zero control is uncontrollable, and the system in the other example is completely controllable. We investigate the sufficient conditions for convexity of projection of reachable sets. Numerical modeling has been carried out, demonstrating the non-convexity of some projections even for small time intervals.

  7. Рассматриваются всюду плотные подмножества произведений топологических пространств. Доказано, что в произведении $Z^c=\prod\limits_{\alpha\in 2^\omega} Z_{\alpha},$ где $Z_\alpha=Z$ $(\alpha\in 2^\omega),$ сепарабельных пространств существуют счетные всюду плотные множества такие, что всякие счетные их подмножества имеют проекции на грани, обладающие дополнительными свойствами. Это позволяет доказать ряд фактов о всюду плотных множествах, в частности отсутствие сходящихся последовательностей, оценивать характер замкнутых подмножеств произведений.

    Gryzlov A.A.
    On projections of products of spaces, pp. 409-413

    We consider dense sets of products of topological spaces. We prove that in the product $Z^c=\prod\limits_{\alpha\in 2^\omega} Z_{\alpha},$ where $Z_\alpha=Z$ $(\alpha\in 2^\omega),$ there are dense sets such that their countable subsets have projections with additional properties. These properties entail that these dense sets contain no convergent sequences. By these properties we prove that the character of closed sets of the product is uncountable.

  8. Модуль $M$ называется псевдополупроективным, если для всех $\alpha,\beta \in \mathrm{End}_R(M)$ таких, что $\mathrm{Im}(\alpha)=\mathrm{Im}(\beta)$, выполнено $\alpha\, \mathrm{End}_R(M)=\beta\, \mathrm{End}_R(M)$. В данной работе мы изучаем некоторые свойства псевдополупроективных модулей и их колец эндоморфизмов. Показано, что кольцо $R$ является полулокальным тогда и только тогда, когда каждый полупримитивный конечно порожденный правый $R$-модуль является псевдополупроективным. Кроме того, мы показываем, что если $M$ — коретрактабельный псевдополупроективный модуль с конечной размерностью пустоты, то $\mathrm{End}_R(M)$ — полулокальное кольцо и каждый максимальный правый идеал $\mathrm{End}_R(M)$ имеет вид $\{s \in \mathrm{End}_R(M) | \mathrm{Im}(s) + \mathrm{Ker}(h)\ne M\}$ для некоторого эндоморфизма $h$ модуля $M$, где $h(M)$ пустотелый.

    A module $M$ is called pseudo semi-projective if, for all $\alpha,\beta\in \mathrm{End}_R(M)$ with $\mathrm{Im}(\alpha)=\mathrm{Im}(\beta)$, there holds $\alpha\, \mathrm{End}_R(M)=\beta\, \mathrm{End}_R(M)$. In this paper, we study some properties of pseudo semi-projective modules and their endomorphism rings. It is shown that a ring $ R$ is a semilocal ring if and only if each semiprimitive finitely generated right $R$-module is pseudo semi-projective. Moreover, we show that if $M$ is a coretractable pseudo semi-projective module with finite hollow dimension, then $\mathrm{End}_R(M)$ is a semilocal ring and every maximal right ideal of $\mathrm{End}_R(M)$ has the form $\{s \in \mathrm{End}_R(M) | \mathrm{Im}(s) + \mathrm{Ker}(h)\ne M\}$ for some endomorphism $h$ of $M$ with $h(M)$ hollow.

  9. Рассматриваются ударные движения плоских твердых дисков над неподвижной горизонтальной плоскостью в однородном поле тяжести. Плоскость является абсолютно гладкой, соударения с плоскостью - абсолютно упругими. Диски движутся в вертикальной плоскости и вращаются вокруг горизонтальной оси, при этом они могут отрываться от плоскости с последующими ударами и прыжками. Приведены двумерные отображения таких движений дисков на фазовой плоскости при различных энергиях. Также определены стационарные точки и проведен полный анализ их линейной устойчивости. Показано, что в плоскости параметров имеется множество зон устойчивости и неустойчивости в первом приближении. Получены явные аналитические условия устойчивости и неустойчивости через параметры задачи.

    We consider the motion of a flat rigig disks bouncing off a horizontal plane in the gravity field. The plane is assumed to be absolutely smooth and the impact absolutely elastic. The disks move in vertical plane and rotate around horizontal axis, while the disks are able to break off from the plane with following impacts and bounces. For different values of the energy, 2D projections of the disk’s trajectories onto the phase plane are given. The stationary points are determined and their linear stability is studied in detail. It is shown, there are alternating domains of linear stability and instability in the first approximation in the plane parameters. The stability conditions are expressed analytically in terms of the parameters of the problem.

  10. Статья посвящена решению обратной граничной задачи для стержня, состоящего из композиционных материалов. В обратной задаче требуется, используя информацию о температуре теплового потока в разделе сред, определить температуру на одном из концов стержня. В работе представлен метод проекционной регуляризации, который позволил приближенно оценить погрешность полученного решения обратной задачи. Для проверки вычислительной эффективности этого метода были проведены тестовые расчеты.

    The article is devoted to solving an inverse boundary value problem for a rod consisting of composite materials. In the inverse problem, it is required, using information about the temperature of the heat flow in the media section, to determine the temperature at one of the ends of the rod. The paper presents a method of projection regularization, which made it possible to approximately estimate the error of the obtained solution to the inverse problem. To check the computational efficiency of this method, test calculations were carried out.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref