Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'power series':
Найдено статей: 4
  1. Атамуратов А.А., Расулов К.К.
    О теореме Шимоды, с. 17-31

    Настоящая работа посвящена теореме Шимоды о голоморфности функции $f(z,w)$, которая является голоморфной по $w\in V$ при фиксированном $z\in U$ и голоморфна по $z\in U$ при фиксированном $w\in E$, где $E\subset V$ - счетное множество, по крайней мере, с одной предельной точкой в $V$. Шимода доказывает, что в этом случае $f(z,w)$ голоморфно в $U\times V$, за исключением нигде не плотного замкнутого подмножества $U\times V.$ Рассматривается обратная задача и доказывается, что для любого заранее заданного нигде не плотного замкнутого подмножества $S\subset U$ существует голоморфная функция, удовлетворяющая теореме Шимоды на $U\times V\subset {\mathbb C}^{2}$, не голоморфная на $S\times V$. Кроме того, исследованы дополнительные условия, которые влекут за собой пустые множества особенностей в теореме Шимоды. Доказывается обобщение в случае, когда функция имеет переменный радиус голоморфности по одному из направлений.

    Atamuratov A.A., Rasulov K.K.
    On Shimoda's Theorem, pp. 17-31

    The present work is devoted to Shimoda's Theorem on the holomorphicity of a function $f(z,w)$ which is holomorphic by $w\in V$ for each fixed $z\in U$ and is holomorphic by $z\in U$ for each fixed $w\in E$, where $E\subset V$ is a countable set with at least one limit point in $V$. Shimoda proves that in this case $f(z,w)$ is holomorphic in $U\times V$ except for a nowhere dense closed subset of $U\times V$. We prove the converse of this result, that is for an arbitrary given nowhere dense closed subset of $U$, $S\subset U$, there exists a holomorphic function, satisfying Shimoda's Theorem on $U\times V\subset {\mathbb C}^{2}$, that is not holomorphic on $S\times V$. Moreover, we observe conditions which imply empty exception sets on Shimoda's Theorem and prove generalizations of Shimoda's Theorem.

  2. В ограниченной по переменной $z$ области, имеющей слабо горизонтальную неоднородность, исследуется задача определения сверточного ядра $k(t,x)$, $t>0$, $x\in {\Bbb R}$, входящего в гиперболическое интегро-дифференциальное уравнение второго порядка. Предполагается, что это ядро слабо зависит от переменной $x$ и разлагается в степенной ряд по степеням малого параметра $\varepsilon$. Построен метод нахождения первых двух коэффициентов $k_{0}(t)$, $k_{1}(t)$ этого разложения по заданным первым двум моментам по переменной $x$ решения прямой задачи при $z=0$.

    The problem of determining the convolutional kernel $k(t,x)$, $t>0$, $x \in {\Bbb R}$, included in a hyperbolic integro-differential equation of the second order, is investigated in a domain bounded by a variable $z$ and having weakly horizontal heterogeneity. It is assumed that this kernel weakly depends on the variable $x$ and decomposes into a power series by degrees of a small parameter $\varepsilon$. A method for finding the first two coefficients $k_{0}(t)$, $k_{1}(t)$ of this expansion is constructed according to the given first two moments in the variable $x$ of the solution of the direct problem at $z=0$.

  3. Полянский И.С., Радыгин В.М., Мисюрин С.Ю.
    Разложение регулярной кватернион-функции, с. 36-47

    В статье рассмотрены задачи, связанные с разложением регулярной кватернион-функции в обобщенные ряды Тейлора и Лорана. Обобщенный ряд Тейлора для регулярной кватернион-функции получен путем разложения ядра Коши в 4-мерном гипершаре в алгебре кватернионов и в системе гиперсферических координат. Обобщенный ряд Лорана для регулярной кватернион-функции получен путем разложения ядра Коши во внешности 4-мерного гипершара в алгебре кватернионов и в системе гиперсферических координат. На основе полученных решений при рассмотрении разложения регулярной кватернион-функции в бесконечно малом шаре, который ограничен 3-сферой, задано правило определения вычета регулярной кватернион-функции в алгебре кватернионов и в системе гиперсферических координат относительно изолированной особой точки. Также найдено разложение мероморфной кватернион-функции в степенной ряд.

    Polansky I.S., Radygin V.M., Misyurin S.Y.
    Decomposition of a regular quaternion function, pp. 36-47

    This article deals with the tasks associated with the decomposition of a regular quaternion function into generalized Taylor and Laurent series. The generalized Taylor series for a regular quaternion function were obtained by the decomposition of the Cauchy kernel in a 4-dimensional hyperball in the algebra of quaternions and the hyperspherical coordinate system. The generalized Laurent series for a regular quaternion function were obtained by the decomposition of the Cauchy kernel in the exterior of a 4-dimensional hyperball in the algebra of quaternions and the hyperspherical coordinate system. On the basis of the obtained solutions by considering the decomposition of a regular quaternion function in an infinitely small ball that is restricted by the 3-sphere, we set the rule to determine the deduction of a regular quaternion function in the algebra of quaternions and the hyperspherical coordinate system regarding the isolated singular point. In addition, the decomposition of a meromorphic quaternion function into the power series was found.

  4. Исследуется асимптотическое поведение решения задачи Дирихле для бисингулярно возмущенного эллиптического уравнения второго порядка в кольце с двумя независимыми переменными. Для построения асимптотического разложения решения задачи применяется модифицированная схема метода пограничных функций Вишика-Люстерника-Васильевой-Иманалиева. Предлагаемый метод отличается от метода согласования тем, что нарастающие особенности внешнего разложения фактически из него убираются и с помощью вспомогательного асимптотического ряда полностью вносятся во внутренние разложения, а от классического метода пограничных функций здесь пограничные функции убывают степенным характером, а не экспоненциально. Асимптотическое разложение решения представляет собой ряд Пюизё. Полученное асимптотическое разложение решения задачи Дирихле обосновано принципом максимума.

    The paper refers to the asymptotic behavior of the Dirichlet problem solution for a bisingular perturbed elliptic second-order equation with two independent variables in the ring. To construct the asymptotic expansion of the solution the authors apply the modified scheme of the method of boundary functions by Vishik-Lyusternik-Vasil'eva-Imanaliev. The proposed method differs from the matching method by the fact that growing features of the outer expansion are in fact removed from it and with the help of an auxiliary asymptotic series are placed entirely in the internal expansion, and from the classical method of boundary functions by the fact that boundary functions have power-law decrease, not exponential. An asymptotic expansion of the solution is a series of Puiseux. The resulting asymptotic expansion of the Dirichlet problem solution is justified by the maximum principle.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref