Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'problem with shift':
Найдено статей: 10
  1. Данная работа посвящена постановке и исследованию однозначной разрешимости краевых задач (типа задачи Дарбу, задачи Трикоми) для нагруженного интегро-дифференциального уравнения третьего порядка с гиперболическим и параболо-гиперболическим оператором. Существование и единственность решения краевой задачи доказана методом интегральных уравнений. Задачи эквивалентным образом сводятся к интегральным уравнениям Вольтерра со сдвигом. При достаточных условиях на заданные функции и коэффициенты доказывается однозначная разрешимость полученных интегральных уравнений.

    In this paper, the unique solvability of the boundary value problems (of a type similar to the Darboux problem and the Tricomi problem) of a loaded third order integro-differential equation with hyperbolic and parabolic-hyperbolic operators is proved by method of integral equations. The problem is similarly reduced to a Volterra integral equation with a shift. Under sufficient conditions for given functions and coefficients the unique solvability is proved for the solution of obtained integral equations.

  2. Рассматривается задача о назначении спектра показателей Ляпунова линейной управляемой системы с дискретным временем $$x(m+1)=A(m)x(m)+B(m)u(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n},\ u\in\mathbb R^{k}, \qquad (1)$$ посредством линейной по фазовым переменным обратной связи $u(m)=U(m)x(m)$ в малой окрестности спектра показателей свободной системы $$x(m+1)=A(m)x(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n}. \qquad (2)$$ Дополнительно требуется, чтобы норма матрицы обратной связи $U(\cdot)$ удовлетворяла липшицевой оценке по отношению к требуемому смещению показателей. Это свойство называется пропорциональной локальной управляемостью полного спектра показателей Ляпунова замкнутой системы $$x(m+1)=\bigl(A(m)+B(m)U(m)\bigr)x(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n}. \qquad (3)$$ Построен пример, показывающий, что найденные ранее достаточные условия пропорциональной локальной управляемости полного спектра показателей Ляпунова системы (3) (равномерная полная управляемость системы (1) и устойчивость показателей Ляпунова свободной системы (2)) не являются необходимыми.

    We consider a problem of assigning the Lyapunov spectrum for a linear control discrete-time system $$x(m+1)=A(m)x(m)+B(m)u(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n},\ u\in\mathbb R^{k}, \qquad (1)$$ in a small neighborhood of the Lyapunov spectrum of the free system $$x(m+1)=A(m)x(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n},\qquad (2) $$ by means of linear feedback $u(m)=U(m)x(m)$. We assume that the norm of the feedback matrix $U(\cdot)$ satisfies the Lipschitz estimate with respect to the required shift of the Lyapunov spectrum. This property is called proportional local assignability of the Lyapunov spectrum of the closed-loop system $$x(m+1)=\bigl(A(m)+B(m)U(m)\bigr)x(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n}. \qquad (3)$$ We previously proved that uniform complete controllability of system (1) and stability of the Lyapunov spectrum of free system (2) are sufficient conditions for proportional local assignability of the Lyapunov spectrum of closed-loop system (3). In this paper we give an example demonstrating that these conditions are not necessary.

  3. Для динамической системы, подверженной воздействиям управления и помехи и содержащей последействие в управляющих силах, рассматривается задача об управлении с оптимальным гарантированным результатом для показателя качества, представляющего собой евклидову норму совокупности отклонений движения системы в заданные моменты времени от заданных целей. На основе функциональной трактовки, опирающейся на своеобразный прогноз движений, исходная задача сводится к вспомогательной дифференциальной игре для системы без запаздывания и с терминальной платой. Функция цены этой игры вычисляется на базе конструкции выпуклых сверху оболочек вспомогательных функций из метода стохастического программного синтеза, оптимальные стратегии строятся методом экстремального сдвига на сопутствующие точки. Рассматриваются иллюстрирующие примеры, приводятся результаты численных экспериментов.

    For a dynamical system under control and disturbances, and with delay in control, the problem of control with the optimal guaranteed result is considered for a quality index which is the Euclidean norm of the set of deviations of a system motion at the given instants from the given targets. On the basis of a functional treatment basing on a proper prediction of the motion the problem is reduced to an auxiliary differential game for a system without delay and with a terminal quality index. The value of this game is calculated from the construction of upper convex hulls of auxiliary functions from the method of stochastic program synthesis, optimal strategies are formed by the method of an extremal shift to the corresponding points. Illustrating examples and results of numerical experiments are presented.

  4. В работе изучена следующая задача: для линейной автономной дифференциально-разностной системы нейтрального типа с запаздыванием в состоянии требуется обеспечить ее полное успокоение с помощью обратной связью. Для решения указанной задачи предложен линейный автономный динамический дифференциально-разностный регулятор типа обратной связи по состоянию, не выводящий замкнутую систему из исходного класса линейных автономных систем нейтрального типа. Достаточное условие существования такого регулятора совпадает с критерием полной управляемости. Кроме того, замкнутая система будет иметь конечный спектр, что существенно упрощает задачу вычисления текущего состояния в ходе технической реализации регулятора. Основная идея исследования заключается в выборе параметров регулятора так, чтобы замкнутая система стала точечно вырожденной в направлениях, отвечающих фазовым компонентам исходной (разомкнутой) системы. Для этого на начальном этапе исходная система обратной связью приводится к системе запаздывающего типа с одним входом. Далее для полученного объекта строится динамический регулятор, обеспечивающий вырождение соответствующих фазовых компонент.

    Предложенная процедура построения управляющего воздействия базируется на алгебраических свойствах оператора сдвига и не предполагает вычисления корней характеристического квазиполинома исходной системы. Возможно ее использование для обеспечения замкнутой системе не только полного успокоения, но и экспоненциальной устойчивости. Однако в последнем случае возникает необходимость использовать динамические регуляторы с обратной связью по состоянию интегрального типа.

    Metel'skii A.V., Khartovskii V.E., Urban O.I.
    Calming the solution of systems of neutral type with many delays using feedback, pp. 40-51

    This paper examines the following problem: a linear autonomous differential-difference system of neutral type with delay in state requires ensuring its complete calming by feedback. To solve this problem linear autonomous dynamic differential-difference controller with state feedback is proposed; this controller does not exclude a closed system from the original class of linear autonomous systems of neutral type. Sufficient condition for the existence of such a controller coincides with the criterion of complete controllability. In addition, the closed system has a finite spectrum, which simplifies greatly the problem of calculating the current state during the technical implementation of the controller. The basic idea of research is to select parameters for the controller so that the closed system becomes point-degenerated in directions corresponding to phase components of the original (open) system. To do this, the original system is first converted via feedback to the single-input system of retarded type. Further, for the resulting object the dynamic controller that provides the degeneracy of the corresponding phase components is constructed.

    The proposed procedure for constructing the control action is based on the algebraic properties of shift operator and does not involve calculating the roots of characteristic quasipolynomial of the original system. It can be used to provide full calming as well as exponential stability to a closed system. However, in the latter case it is necessary to use dynamic controller with state feedback of integral type.

  5. Для управляемых систем со случайными параметрами исследуются свойства статистической инвариантности и статистически слабой инвариантности, выполненные с вероятностью единица. Получены достаточные условия инвариантности заданного множества относительно управляемой системы, выраженные в терминах функций Ляпунова и динамической системы сдвигов. Доказано обобщение теоремы С.А. Чаплыгина о дифференциальных неравенствах и получены условия существования верхнего решения для задачи Коши с кусочно непрерывной по t правой частью без предположения единственности решения.

    We investigate the properties of statistical invariance and statistically weak invariance with probability one for control systems with random parameters. We obtain the sufficient conditions for the invariance of the given set with respect to the control system formulated in terms of Lyapunov functions and the dynamical system of shifts. We prove the extension for the theorem of S.A. Chaplygin about differential inequalities and obtain the conditions of existence for the upper solution of Cauchy problem with piecewise continuous on t right-hand part without assumption of uniqueness of solution.

  6. В современной физической литературе неоднократно возникала потребность в формулах, позволяющих в квантовой одномерной задаче рассеяния свести вычисление вероятности отражения (прохождения) для потенциала, состоящего из нескольких «барьеров», к вероятностям отражения и прохождения через эти «барьеры». В настоящей работе исследуется задача рассеяния для разностного оператора Шрёдингера с потенциалом, являющимся суммой N функций (описывающих «барьеры» или «слои») с попарно непересекающимися носителями. С помощью уравнения Липпмана-Швингера доказана теорема, позволяющая вычисление амплитуд отражения и прохождения для данного потенциала свести к вычислению амплитуд отражения и прохождения для слагаемых. Для N=2 получены простые явные формулы, осуществляющие такое сведение. Рассмотрены частные случаи четного первого барьера и двух одинаковых четных (после соответствующих сдвигов) барьеров. Разумеется, аналогичные результаты справедливы и для вероятностей отражения и прохождения. Получено простое уравнение для нахождения резонансов двухбарьерной структуры в терминах амплитуд для каждого из двух барьеров.

    В статье также приведена иная схема доказательства полученных результатов, основанная на разложении в ряд T-оператора, позволяющая обосновать физические представления о рассеянии на многослойной структуре как о многократном рассеянии на отдельно взятых слоях. При доказательстве утверждений используется известный прием сведения уравнения Липпмана-Швингера к «модифицированному» уравнению в гильбертовом пространстве, что позволяет, в свою очередь, воспользоваться теорией Фредгольма. Конечно, все полученные результаты остаются справедливыми и для «непрерывного» оператора Шрёдингера, а выбор дискретного подхода обусловлен его растущей популярностью в квантовой теории твердого тела.

    In modern physics literature, the need for formulas that permit, in a quantum one-dimensional problem, to reduce a calculation of the reflection (transmission) probability for the potential consisting of some “barriers” to the reflection and transmission probabilities over these “barriers” repeatedly occurred. In this paper, we study the scattering problem for the difference Schrodinger operator with the potential which is the sum of N functions (describing the “barriers” or “layers”) with pairwise disjoint supports. With the help of the Lippmann-Schwinger equation, we proved the theorem which reduces the calculation of the reflection and transmission amplitudes for this potential, to the calculation of the ones for these barriers. For N=2 simple explicit formulas which realized this reduction were obtained. The particular cases for the even first barrier and two identical even (after appropriate shifts) barriers were studied. Of course, the similar results hold for the reflection (transmission) probabilities. We obtained the simple equation for the double-barrier structure resonances in terms of the amplitudes of each of the two barriers.

    In the paper, we also present the alternative scheme of the proof of the obtained results which are based on the series expansion of the T-operator. This approach substantiates the physical understanding of the scattering by a multilayer structure as multiple scattering on separate layers. To proof the theorems, the known method of reduction of the Lippmann-Schwinger equation to the “modified” equation in a Hilbert space is used. Of course, all the results remain valid for the “continuous” Schrodinger operator, and the choice of the discrete approach is due to its growing popularity in the quantum theory of solids.

  7. В работе исследуются нелокальные краевые задачи со смещением и разрывными условиями сопряжения на линии изменения типа для модельного нагруженного уравнения смешанного гиперболо-параболического типа. В параболической области уравнение представляет собой уравнение дробной диффузии, в гиперболической - характеристически нагруженное волновое уравнение. Единственность решения исследуемых задач при определенных условиях на коэффициенты задачи доказывается методом Трикоми. Существование решения задач сводится к решению интегрального уравнения Фредгольма второго рода относительно следа искомого решения на линии изменения типа. Однозначная разрешимость интегрального уравнения следует из единственности решения задач. После решения интегрального уравнения решение задач сводится к решению первой краевой задачи для уравнения дробной диффузии в параболической области и решению задачи Коши для неоднородного волнового уравнения в гиперболической. Выписаны формулы представления решений исследуемых задач в параболической и гиперболической областях.

    The paper deals with non-local boundary-value problems with shift and discontinuous conjugation conditions in the line of type changing for a model loaded hyperbolic-parabolic type equation. The parabolic domain presents a fractional diffusion equation while the hyperbolic one presents a characteristically loaded wave equation. The uniqueness of the solution to the considered problems under certain conditions on the coefficients is proved by the Tricomi method. The existence of the solution involves solving the Fredholm integral equation of the second kind with respect to the trace of the sought solution in the line of type changing. The unique solvability of the integral equation implies the uniqueness of the solution to the problems. Once the integral equation is solved, the solution to the problems is reduced to solving the first boundary value problem for the fractional diffusion equation in the parabolic domain and the Cauchy problem for the inhomogeneous wave equation in the hyperbolic one. In addition, representation formulas are written out for solving the problems under study in the parabolic and hyperbolic domains.

  8. В работе представлена постановка задачи случайной упаковки твёрдых частиц в пространстве в виде минимизации целевой функции, являющейся мерой пересечений подобластей (представляющих частицы и запрещённые области) в R3; при этом желаемые особенности упаковки учитываются дополнительным слагаемым в целевой функции. Предложен новый алгоритм упаковки на основе метода случайного поиска, в котором оценка новой конфигурации частиц производится после каждого перемещения, а сами частицы увеличивают свой размер от начального до заданного по мере устранения пересечений между ними. Данный алгоритм сопоставлен с алгоритмом вязкой суспензии для случая упаковки равновеликих сфер в периодическом кубе; при плотности упаковки φ < 0,55 алгоритм случайного поиска формирует упаковки с меньшим количеством и размером кластеров частиц, в более плотных упаковках различия незначительны. Также показан пример формирования упаковки с особенностью в виде смещения частиц вплотную к твёрдой границе.

     

    The paper presents a problem statement for random hard particles packing as minimization of an objective function that is the measure of overlapping of R3 subdomains representing particles and forbidden zones, with desired pack characteristics being accounted for by an additional summand in the objective function. A new algorithm based on the random search approach is proposed; it assesses a new particles configuration after each movement, and particles grow from an initial to full size as overlaps being removed. This algorithm is matched with the viscous suspension algorithm for the case of packing equal-sized spheres in a periodic cube. For packing fractions φ < 0,55 the random search algorithm yields packs with fewer and smaller particle clusters than the viscous suspension one, in denser packs differences are insignificant. An example of creating a pack with the feature that particles are shifted closely to the solid boundary is shown as well.

     

  9. В статье рассмотрено параболо-гиперболическое уравнение с сингулярным коэффициентом и спектральным параметром в области, состоящей из характеристического треугольника и полуполосы. Сформулирована задача с нелокальным условием, связывающим значения искомой функции в точках двух граничных характеристик и линии изменения типа уравнения с помощью двух операторов, один из которых зависит от коэффициента сингулярности, а другой — от спектрального параметра. Поставленная задача исследована сведением ее к системе уравнений относительно следа искомой функции и еe производной по $x$ на линии изменения типа уравнения. Единственность решения доказана с использованием метода интегралов энергии, при этом использованы интегральные представления гамма-функции Эйлера и функции Бесселя первого рода. Существование решения задачи доказано методом интегральных уравнений, при этом поставленная задача эквивалентно сведена к интегральному уравнению Фредгольма второго рода, разрешимость которого следует из единственности решения задачи. Выявлены достаточные условия, которые обеспечивают однозначную разрешимость поставленной задачи.

    In the paper, a parabolic-hyperbolic equation with a singular coefficient and a spectral parameter in the domain which consists of a characteristic triangle and a half strip has been considered. A nonlocal problem connecting the values of the desired function at the two points of boundary characteristics and the line of equation type changing by means of two operators, the first of which depends on the coefficient of the singularity and the second one - on the spectral parameters, is formulated. The considered problem is investigated by reducing it to the system of equations in the trace of the desired function and its derivative with respect to $x$ on the line of equation type changing. The uniqueness of the solution is proved by the method of energy integrals, for this we use integral representations of Euler gamma-function and Bessel function of the first kind. The existence of the solution is proved by the method of integral equations, for this we equivalently reduce the considered problem to the Fredholm integral equation of the second kind which solvability follows from the uniqueness of the problem solution. Sufficient conditions for unique solvability of the considered problem are found.

  10. Для систем, описываемых уравнениями с запаздыванием, обсуждается применение экстремального сдвига к исследованию некоторых задач динамической идентификации и робастного управления.

    The application of extremal shift to the investigation of some problems of dynamical identification and robust control is discussed for systems described by equations with delay.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref