Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'reaction-diffusion':
Найдено статей: 7
  1. Казарников А.В., Ревина С.В.
    Бифуркации в системе Рэлея с диффузией, с. 499-514

    Рассматривается система реакции-диффузии с кубической нелинейностью, которая является бесконечномерным аналогом классической системы Рэлея и частным случаем системы Фитцью-Нагумо. Предполагается, что пространственная переменная изменяется на отрезке, на концах которого заданы однородные краевые условия Неймана. Известно, что в данном случае в системе Рэлея с диффузией существует пространственно-однородный автоколебательный режим, совпадающий с предельным циклом классической системы Рэлея. В настоящей работе показано существование счетного множества критических значений управляющего параметра, при которых возникают пространственно-неоднородные автоколебательные и стационарные режимы. Данные режимы устойчивы относительно возмущений, принадлежащих некоторым бесконечномерным инвариантным подпространствам системы, но неустойчивы во всем фазовом пространстве. Это свойство объясняет, почему в результате численных экспериментов при некоторых значениях параметра различным начальным условиям соответствуют нулевое, периодическое по времени или стационарное решение. Асимптотика вторичных решений построена методом Ляпунова-Шмидта. Явно найдены первые члены разложения, проанализированы формулы для общего члена асимптотики. Показано, что на инвариантных подпространствах происходит мягкая потеря устойчивости нулевого равновесия. Эволюция вторичных режимов при увеличении значений надкритичности исследована численно. Установлено, что с ростом значений надкритичности вторичные автоколебательные режимы постепенно сменяются стационарными. Амплитуда стационарных решений растет по мере увеличения надкритичности, а профиль асимптотически стремится к профилю меандра.

    Kazarnikov A.V., Revina S.V.
    Bifurcations in a Rayleigh reaction-diffusion system, pp. 499-514

    We consider a reaction-diffusion system with a cubic nonlinear term, which is a special case of the Fitzhugh-Nagumo system and an infinite-dimensional version of the classical Rayleigh system. We assume that the spatial variable belongs to an interval, supplemented with Neumann boundary conditions. It is well-known that in that specific case there exists a spatially-homogeneous oscillatory regime, which coincides with the time-periodic solution of the classical Rayleigh system. We show that there exists a countable set of critical values of the control parameter, where each critical value corresponds to the branching of new spatially-inhomogeneous auto-oscillatory or stationary regimes. These regimes are stable with respect to small perturbations from some infinite-dimensional invariant subspaces of the system under study. This, in particular, explains the convergence of numerical solution to zero, periodic or stationary solution, which is observed for some specific initial conditions and control parameter values. We construct the asymptotics for branching solutions by using Lyapunov-Schmidt reduction. We find explicitly the first terms of asymptotic expansions and study the formulas for general terms of asymptotics. It is shown that a soft loss of stability occurs in invariant subspaces. We study numerically the evolution of secondary regimes due to the increase of control parameter values and observe that the secondary periodic solutions are transformed into stationary ones as the control parameter value increases. Next, the amplitude of stationary solutions continues to grow and the solution asymptotically converges to the square wave regime.

  2. Изучается многомерный случай нелинейной системы реакции-диффузии, моделируемый системой двух уравнений параболического типа со степенными нелинейностями. Такого рода системы можно применять для моделирования процесса распространения в пространстве взаимодействующих распределенных формаций роботов двух типов. Такие уравнения описывают также процессы нелинейной диффузии в реагирующих двухкомпонентных сплошных средах. Предложен оригинальный вариант метода редукции, сводящий построение зависимости точного решения от пространственных переменных к решению уравнения Гельмгольца, а зависимости от времени — к решению линейной системы обыкновенных дифференциальных уравнений. Построен ряд примеров многопараметрических семейств точных решений, задаваемых элементарными функциями.

    Kosov A.A., Semenov E.I., Tirskikh V.V.
    On multidimensional exact solutions of a nonlinear reaction-diffusion system, pp. 225-239

    We study a multidimensional case of a nonlinear reaction-diffusion system modeled by a system of two parabolic equations with power nonlinearities. Such systems can be used to simulate the process of propagation in space of interacting distributed formations of robots of two types. Such equations also describe the processes of nonlinear diffusion in reacting two-component continuous media. An original version of the reduction method is proposed, which reduces the construction of the dependence of the exact solution on spatial variables to the solution of the Helmholtz equation, and the dependence on time to the solution of a linear system of ordinary differential equations. A number of examples of multiparameter families of exact solutions given by elementary functions are constructed.

  3. Рассмотрен альтернативный способ описания реакционно-диффузионных систем химической кинетики  на основе обыкновенных дифференциальных уравнений. В рамках данного подхода учёт диффузии вещества и переноса тепла в модели осуществляется без перехода к частным производным, а только за счёт увеличения количества переменных и аддитивных поправок в исходные уравнения. При этом в качестве базовой модели химической кинетики для данной работы была выбрана модель, лишённая недостатков классических моделей химической кинетики, таких как несогласованность уравнений по размерности или масштабу.

    An alternative way for describing reaction-diffusion systems of chemical kinetics on the basis of ordinary differential equations is considered in this paper. Under this approach, diffusion of matter and heat transfer in the model are taken into account without going to the partial derivatives, but only by increasing the number of variables and the addition of corrective coefficients in the original equations. As a base model of chemical kinetics was chosen the one, in which there was no such drawbacks of classical models, as the inconsistency of the equations on the dimension or scale.

  4. В работе рассматривается модель химической кинетики, для которой вывод уравнений не опирается на закон действующих масс, а строится на основе таких принципов, как геометрическая вероятность, а также совместная вероятность для двух событий. Для этой модели строится обобщение на случай реакции-диффузии в гетерогенной среде, а также учитывается конвекционный и диффузионный перенос тепловой энергии. Построение данного обобщения проводится по альтернативной методике на основе систем обыкновенных дифференциальных уравнений и без перехода к частным производным. По своему описанию этот подход близок к методу конечных объемов, но в отличие от него для описания диффузии применяются статистические упрощения и принцип геометрической вероятности. Подобный альтернативный вариант позволяет значительно упростить численную реализацию итоговой модели, а также упростить ее качественный анализ методами теории динамических систем. Помимо этого, также значительно повышается эффективность параллельной реализации численного метода для итоговой модели. Дополнительно к этому мы также рассмотрим приложение модели для описания эталонного примера кинетики с квазипериодическим режимом, а также рассмотрим алгоритм перевода стандартных моделей с размерными кинетическими константами к ее формализму.

    The paper considers a model of chemical kinetics for which the derivation of equations does not rely on the law of mass action, but is rather based on such principles as geometric probability and joint probability. For this model a generalization is constructed for the case of reaction-diffusion systems in heterogeneous medium, with respect to the convective and diffusive transfer of heat. The construction of this generalization is carried out by an alternative methodology, which is based fully on systems of ordinary differential equations, without a transition to partial derivatives. The description of this new method is a bit similar to the finite volume method, except that it uses statistical simplifying positions and geometric probability to describe diffusion processes. Such approach allows us to greatly simplify the numerical implementation of the resulting model, as well as to simplify its quantitative analysis by dynamical systems theory methods. Moreover, the efficiency of parallel implementation of the numerical method is increased for the resulting model. In addition, the author considers an application of this model for the description of some example reaction with quasi-periodic regime, as well as an algorithm for the transition from standard models with dimensional kinetic constants to its formalism.

  5. Классическая система реакции-диффузии — система Шнакенберга — рассматривается в ограниченной области $m$-мерного пространства, на границе которой предполагаются выполненными краевые условия Неймана. Изучается диффузионная неустойчивость стационарного пространственно-однородного решения этой системы, называемая также неустойчивостью Тьюринга, возникающая при изменении коэффициента диффузии $d.$ Путем анализа линеаризованной системы в бездиффузионном и диффузионном приближениях получено аналитическое описание области необходимых и достаточных условий неустойчивости Тьюринга на плоскости параметров системы. Показано, что одна из границ области необходимых условий является огибающей семейства кривых, ограничивающих область достаточных условий. При этом точки пересечения двух соседних кривых лежат на прямой, угловой коэффициент которой зависит от собственных значений оператора Лапласа в рассматриваемой области и не зависит от коэффициента диффузии. Найдено аналитическое выражение критического коэффициента диффузии, при котором происходит потеря устойчивости положения равновесия системы. Указаны условия, в зависимости от которых множество волновых чисел, соответствующих нейтральным модам устойчивости, счетно, конечно или пусто. Показано, что полуось $d>1$ можно представить в виде счетного объединения полуинтервалов, каждому из которых соответствует минимальное волновое число, при котором происходит потеря устойчивости, причем точки разбиения полуоси выражаются через собственные значения оператора Лапласа в рассматриваемой области.

    A classical reaction-diffusion system, the Schnakenberg system, is under consideration in a bounded domain $\Omega\subset\mathbb{R}^m$ with Neumann boundary conditions. We study diffusion-driven instability of a stationary spatially homogeneous solution of this system, also called the Turing instability, which arises when the diffusion coefficient $d$ changes. An analytical description of the region of necessary and sufficient conditions for the Turing instability in the parameter plane is obtained by analyzing the linearized system in diffusionless and diffusion approximations. It is shown that one of the boundaries of the region of necessary conditions is an envelope of the family of curves that bound the region of sufficient conditions. Moreover, the intersection points of two consecutive curves of this family lie on a straight line whose slope depends on the eigenvalues of the Laplace operator and does not depend on the diffusion coefficient. We find an analytical expression for the critical diffusion coefficient at which the stability of the equilibrium position of the system is lost. We derive conditions under which the set of wavenumbers corresponding to neutral stability modes is countable, finite, or empty. It is shown that the semiaxis $d>1$ can be represented as a countable union of half-intervals with split points expressed in terms of the eigenvalues of the Laplace operator; each half-interval is characterized by the minimum wavenumber of loss of stability.

  6. В работе рассматривается новая методика моделирования реакционно-диффузионных систем на основе систем обыкновенных дифференциальных уравнений. В отличие от специализированных численных методов, таких как метод прямых, новая методика позиционируется как чистая альтернатива на модельном уровне для уравнений в частных производных. По своему описанию новый метод во многом подобен методу конечных объемов, но в отличие от него для описания диффузии применяет статистические упрощения и принципы геометрической вероятности. Главными задачами данного подхода являются упрощение качественного анализа реакционно-диффузионных систем, а также повышение эффективности численной реализации модели. Первая задача успешно решается, так как для качественного анализа динамики модели на основе систем обыкновенных дифференциальных уравнений становится возможным использовать аппарат классической теории динамических систем. Вторая задача решается лишь отчасти, так как выигрыш при сохранении приемлемой точности для численной реализации будет существенным лишь для определенных, достаточно простых, начальных распределений молекул, а также для определенных коэффициентов диффузии. При этом для формирования критериев применимости на практике мы отдельно оцениваем погрешность моделирования с использованием данной новой методики.

     

    We consider a new technique for modelling the reaction-diffusion systems based on systems of ordinary differential equations. In contrary to the specialized numerical methods such as straight line method, this new technique is positioned at model level as a full alternative for partial differential equations. The description of this new method is quite similar to the description of finite volume method, except that it uses statistical simplifications and principles of geometric probability to describe diffusion processes. The main goal of this approach is to simplify the qualitative analysis of reaction-diffusion systems and to increase the efficiency of the numerical implementation. The first task is successfully resolved because of the fact that for the qualitative analysis of model dynamics based on ordinary differential equations it is possible to use the apparatus of the classical theory of dynamical systems. The second task is solved only partially, because the gain in efficiency while maintaining acceptable accuracy for numerical implementation will be considerable only for certain simple initial distribution of molecules, as well as for certain diffusion coefficients. To determine the criteria for practical application of this technique we also estimate the model error in general.

     

  7. В работе построен алгоритм повышенного порядка точности на основе WENO схем для моделирования динамики многокомпонентного реагирующего газа с учетом процессов диффузии, теплопроводности и химических реакций. Проведены расчеты для течения газа в проточном реакторе для термического пиролиза этана с внешним обогревом реакционной зоны. В рассматриваемых течениях скорость движения газа много меньше скорости распространения звука в газовой смеси, что обуславливает использование уравнений Навье-Стокса в приближении малых чисел Маха для описания исследуемых процессов. Расчет уравнений химических реакций выделяется в отдельный шаг, где скорость реакции определяется на основе выражений Аррениуса. Для построения модели химической кинетики принята кинетическая схема пиролиза этана, представляющая собой разветвленный радикальный механизм. Проведены расчеты дозвукового течения газа с учетом процессов диффузии, химических реакций и их тепловых эффектов для различных температур нагревательных элементов. Сравнение с экспериментальными данными показало, что $1.97\,\%$-ная конверсия этана в расчетах достигается для $648\,^{\circ}$C на выходе металлического реактора, что близко к экспериментальным значениям, составляющим $2.1\,\%$. Сравнение данных экспериментов по термическому пиролизу этана с данными, полученными в ходе вычислительного эксперимента, показало высокую степень достоверности полученных результатов.

    Zhalnin R.V., Peskova E.E., Stadnichenko O.A., Tishkin V.F.
    Modeling the flow of a multicomponent reactive gas using high accuracy algorithms, pp. 608-617

    The article considers a high-order accuracy algorithm for modelling the dynamics of multicomponent reactive gas taking into account the processes of diffusion, thermal conductivity and chemical reactions, based on WENO schemes. Computations for gas flow in a flowing reactor for thermal ethane pyrolysis with external heating of the reaction zone are carried out. The velocity of gas motion in explored flows is much less then sound velocity in gas mixture, which motivates using the Navier-Stokes equations in approximation of low Mach numbers for describing the processes under study. Computation of chemical kinetics equations is singled out as a separate step. The velocity of chemical reactions is defined by Arrhenius expressions. The ethane pyrolysis kinetic scheme is used for constructing the model, which is a branched radical mechanism. Computations of subsonic gas flow taking into account the processes of diffusion, chemical reactions and their thermal effects for different temperature of heating elements are carried out. Comparison with experimental data shows that $1.97\,\%$ conversion of ethane is reached at $648\,^{\circ}$C at the outflow of metal reactor. This result is close to $2.1\,\%$, which is obtained by experiment. Comparison of experimental data of thermal ethane pyrolysis with numerical experimental data shows a high level of reliability of the results obtained.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref