Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В статье рассматривается аналогия между двумя плоскими задачами механики сплошных сред: гидродинамическая задача о движении вязкой жидкости, заключенной между двумя вращающимися цилиндрами, и плоская задача теории упругости в напряжениях, создаваемых в трубе постоянным нормальным внешним давлением. В обеих задачах область решения - кольцо; в рамках настоящей работы рассмотрены два случая: концентрическое и эксцентрическое кольцо. В первой части статьи проведено построение аналогии для случая концентрического кольца, показано, что в этом случае решения рассматриваемых задач выражаются функциями одного и того же вида. Во второй части статьи представлена попытка построения прямой аналогии для случая эксцентрического кольца и обозначены возникающие проблемы. Исследование в третьей части статьи направлено на установление напряженного состояния в эксцентрическом кольце, соответствующего бигармонической функции напряжений, построенной по аналогии с изученной гидродинамической задачей с учетом условий однозначности смещений. В результате проведенного исследования можно сделать вывод о том, что аналогия между рассматриваемыми задачами может быть установлена, но только с учетом механических особенностей каждой из них. При этом в случае концентрического кольца наблюдается прямая аналогия.
вязкая жидкость, плоская задача теории упругости, кольцевая область, биполярные координаты, функция тока, функция напряженийThe article discusses an analogy between two plane problems of continuum mechanics: the hydrodynamic problem of the motion of a viscous fluid enclosed between two rotating cylinders, and the plane problem of the theory of elasticity in stresses created in a tube by a constant normal external pressure. In both problems, the solution domain is a ring; within the framework of this paper, two cases are considered: a concentric and an eccentric ring. In the first part of the article, an analogy is constructed for the case of a concentric ring; it is shown that in this case the solutions to the problems in question are expressed by functions of the same type. The second part of the article presents an attempt to build a direct analogy for the case of an eccentric ring and identifies the problems that arise. The third part of the article is aimed at establishing the stress state in the eccentric ring corresponding to the biharmonic stress function constructed by analogy with the hydrodynamic problem under study, taking into account the conditions for the single-valued displacements. As a result of the study, it can be concluded that an analogy between the problems under consideration can be established, but only taking into account the mechanical features of each of them. In the case of a concentric ring, there is a direct analogy.
-
Величину коэффициента фильтрации принято определять эмпирически в силу обусловленности его физическими и химическими свойствами среды и фильтрующейся жидкости. Однако, полученные экспериментальные данные могут существенно варьироваться в зависимости от приложенных нагрузок. В работе выдвигается новая гипотеза о линейной зависимости коэффициента фильтрации среды от первого инварианта тензора напряжений, возникших в области вследствие гидравлического напора на границе. В рамках этой гипотезы исследуется изменение коэффициента фильтрации области при плоской деформации. Возникновение на границе гидравлического напора ведет к возникновению в среде упругих возмущений. Так как скорость последних много больше скорости фильтрации жидкости, то изменение напряженного состояния области приведет к изменению порового пространства, а следовательно, и к изменению коэффициента фильтрации. Таким образом, исходная задача сводится к решению сначала классической задачи теории упругости, а именно к решению краевой задачи для функции Эри, а затем к определению непосредственно коэффициента фильтрации как решения краевой задачи для гармонического уравнения. В работе построен численный алгоритм решения гармонического и бигармонического уравнений, основанный на методе граничных элементов, который, в конечном счете, сводит исходную задачу к системе линейных алгебраических уравнений. Как показали численные результаты исследований, изменение коэффициента фильтрации некоторых материалов при рабочих нагрузках достигает в некоторых точках области 20 процентов. Особенно актуальны эти результаты при использовании труб, шлангов, водонапорных рукавов из различных полимерных материалов, стеклопластика, а также при эксплуатации гидротехнических и очистных сооружений. Изменение фильтрующей способности среды при малых упругих деформациях делает возможной при соответствующих давлениях фильтрацию даже в тех средах, которые обычно считаются для жидкости непроницаемыми. В работе приведены результаты численных экспериментов по исследованию коэффициента фильтрации полиуретана (гибкий поливочный шланг) и бутилкаучука. Построены графики искомых механических параметров. Расчеты выполнялись в программном пакете Maple.
коэффициент фильтрации, плоская деформация, напряжения, фильтрация, бигармоническое уравнение, гармоническое уравнение, численный алгоритм
Investigation of the filtration coefficient of elastic-porous medium at plane deformation, pp. 396-407The value of the filtration coefficient is determined empirically due to its physical and chemical properties of the medium and the filtered liquid. However, the experimental data obtained can vary significantly depending on the applied loads. The paper proposes a new hypothesis about the linear dependence of the medium filtration coefficient on the first invariant of the stress tensor arising in the region due to the hydraulic head at the boundary. Within the framework of this hypothesis, the change of the region filtration coefficient under plane deformation is investigated. The appearance of hydraulic head on the border leads to the appearance of elastic perturbations in the environment. Since the velocity of the latter is much higher than the velocity of the liquid filtration, the change in the stress state of the region will lead to a change in the pore space, and, consequently, to a change in the filtration coefficient. Thus, the initial problem is reduced to the solution of the classical problem of elasticity theory, namely, to the solution of the boundary value problem for the Erie function, and then to the definition of the filtration coefficient as the solution of the boundary value problem for the harmonic equation. A numerical algorithm for solving harmonic and biharmonic equations based on the boundary element method is constructed, which ultimately reduces the original problem to a system of linear algebraic equations. As shown by the numerical results of studies, the change in the filtration coefficient of some materials under operating loads reaches 20 percent at some points of the region. These results are especially relevant when using pipes, hoses, water hoses made of various polymeric materials, fiberglass, as well as in the operation of hydraulic engineering and treatment facilities. The change in the filtering capacity of the medium at low elastic deformations makes it possible at the appropriate pressures to filter even in those environments that are usually considered impervious to the liquid. The paper presents the results of numerical experiments to study the filtration coefficient of polyurethane (flexible irrigation hose) and butyl rubber. Graphs of the required mechanical parameters are constructed. Calculations were performed in the Maple software package.
-
Экспериментальная идентификация модели термомеханического поведения стеклующихся полимеров, с. 133-145Рассматривается феноменологическая модель термомеханического поведения полимерных материалов в диапазоне температур, включающем релаксационный переход в стеклообразное состояние (стеклование) и обратный переход (размягчение). Дана наглядная интерпретация закономерностей формирования напряженно-деформированного состояния стеклующегося материала с привлечением возможностей предложенной механической модели. Сформулирована система экспериментов для идентификации материальных функций и констант. Проведены натурные испытания для двух типов стеклующихся полимеров - эпоксидной смолы и полиметилметакрилата.
The phenomenological model of thermomechanical behaviour of polymeric materials over the temperature range, including relaxation transition to a glassy state (glass transition) and inverse transferring (softening) is considered. Obvious interpretation of stress-strain state effects of a vitrifying material by the offered mechanical model tools is done. The system of experiments for identification of material functions and constants is formulated. Some tests for two types of vitrifying polymers - a calibration epoxy and PMMA are spent.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.