Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В статье рассматривается аналогия между двумя плоскими задачами механики сплошных сред: гидродинамическая задача о движении вязкой жидкости, заключенной между двумя вращающимися цилиндрами, и плоская задача теории упругости в напряжениях, создаваемых в трубе постоянным нормальным внешним давлением. В обеих задачах область решения - кольцо; в рамках настоящей работы рассмотрены два случая: концентрическое и эксцентрическое кольцо. В первой части статьи проведено построение аналогии для случая концентрического кольца, показано, что в этом случае решения рассматриваемых задач выражаются функциями одного и того же вида. Во второй части статьи представлена попытка построения прямой аналогии для случая эксцентрического кольца и обозначены возникающие проблемы. Исследование в третьей части статьи направлено на установление напряженного состояния в эксцентрическом кольце, соответствующего бигармонической функции напряжений, построенной по аналогии с изученной гидродинамической задачей с учетом условий однозначности смещений. В результате проведенного исследования можно сделать вывод о том, что аналогия между рассматриваемыми задачами может быть установлена, но только с учетом механических особенностей каждой из них. При этом в случае концентрического кольца наблюдается прямая аналогия.
вязкая жидкость, плоская задача теории упругости, кольцевая область, биполярные координаты, функция тока, функция напряженийThe article discusses an analogy between two plane problems of continuum mechanics: the hydrodynamic problem of the motion of a viscous fluid enclosed between two rotating cylinders, and the plane problem of the theory of elasticity in stresses created in a tube by a constant normal external pressure. In both problems, the solution domain is a ring; within the framework of this paper, two cases are considered: a concentric and an eccentric ring. In the first part of the article, an analogy is constructed for the case of a concentric ring; it is shown that in this case the solutions to the problems in question are expressed by functions of the same type. The second part of the article presents an attempt to build a direct analogy for the case of an eccentric ring and identifies the problems that arise. The third part of the article is aimed at establishing the stress state in the eccentric ring corresponding to the biharmonic stress function constructed by analogy with the hydrodynamic problem under study, taking into account the conditions for the single-valued displacements. As a result of the study, it can be concluded that an analogy between the problems under consideration can be established, but only taking into account the mechanical features of each of them. In the case of a concentric ring, there is a direct analogy.
-
В рамках несвязанной теории термовязкоупругости рассматривается фронтальное формирование сферического изделия. Напряженное состояние изделия определяется с точки зрения непрерывно наращиваемого твердого тела. На поверхности роста задан полный тензор напряжений. Учитывается давление со стороны жидкого слоя на образовавшуюся твердую часть.
полимеризация, кристаллизация, фронтальный режим, термовязкоупругость, несвязанная теория, непрерывное наращивание, внутренние технологические напряжения
Tension of frontally formed spherical product, pp. 123-134Frontal formation of a spherical product within the limits of the untied theory of termoviscoelasticity is considered. The tension of a formed product is defined in terms of continuously growing body. The full tension tensor is given on the growing surface. The pressure from the liquid layer on the formed solid part is taken into account.
-
В работе представлены результаты расчетного исследования локальной структуры восходящего газожидкостного потока в вертикальной трубе. Математическая модель основана на использовании двухжидкостного эйлерова подхода с учетом обратного влияния пузырьков на осредненные характеристики и турбулентность несущей фазы. Турбулентная кинетическая энергия жидкости рассчитывается с применением двухпараметрической изотропной модели турбулентности $k - \varepsilon$, модифицированной для двухфазных сред. Для описания динамики распределения пузырьков по размерам используются уравнения сохранения количества частиц для отдельных групп пузырьков с различными диаметрами для каждой фракции с учетом процессов дробления и коалесценции. Численно исследовано влияние изменения степени дисперсности газовой фазы, объемного расходного газосодержания, скорости дисперсной фазы на локальную структуру и поверхностное трение в двухфазном потоке. Сравнение результатов моделирования с экспериментальными данными показало, что разработанный подход позволяет адекватно описывать турбулентные газожидкостные течения в широком диапазоне изменения газосодержания и начальных размеров пузырьков.
The results of numerical simulation of the structure of a two-phase flow of a gas-liquid bubble mixture in a vertical ascending flow in a pipe are presented. The mathematical model is based on the use of the two-fluid Eulerian approach taking into account the inverse influence of bubbles on averaged characteristics and turbulence of the carrying phase. The turbulent kinetic energy of a liquid is calculated using equations for the transfer of Reynolds stresses. To describe the dynamics of bubble size distribution, the equations of particle number conservation for individual groups of bubbles with different constant diameters for each fraction are used taking into account the processes of breakup and coalescence. The influence of changes in the degree of dispersion of the gas phase, volume flow gas content and the velocity of the dispersed phase on the local structure and surface friction in the two-phase flow is numerically investigated. Comparison of simulation results with experimental data has shown that the developed approach allows an adequate description of turbulent gas-liquid flows in a wide range of changes in gas content and initial bubble sizes.
-
Величину коэффициента фильтрации принято определять эмпирически в силу обусловленности его физическими и химическими свойствами среды и фильтрующейся жидкости. Однако, полученные экспериментальные данные могут существенно варьироваться в зависимости от приложенных нагрузок. В работе выдвигается новая гипотеза о линейной зависимости коэффициента фильтрации среды от первого инварианта тензора напряжений, возникших в области вследствие гидравлического напора на границе. В рамках этой гипотезы исследуется изменение коэффициента фильтрации области при плоской деформации. Возникновение на границе гидравлического напора ведет к возникновению в среде упругих возмущений. Так как скорость последних много больше скорости фильтрации жидкости, то изменение напряженного состояния области приведет к изменению порового пространства, а следовательно, и к изменению коэффициента фильтрации. Таким образом, исходная задача сводится к решению сначала классической задачи теории упругости, а именно к решению краевой задачи для функции Эри, а затем к определению непосредственно коэффициента фильтрации как решения краевой задачи для гармонического уравнения. В работе построен численный алгоритм решения гармонического и бигармонического уравнений, основанный на методе граничных элементов, который, в конечном счете, сводит исходную задачу к системе линейных алгебраических уравнений. Как показали численные результаты исследований, изменение коэффициента фильтрации некоторых материалов при рабочих нагрузках достигает в некоторых точках области 20 процентов. Особенно актуальны эти результаты при использовании труб, шлангов, водонапорных рукавов из различных полимерных материалов, стеклопластика, а также при эксплуатации гидротехнических и очистных сооружений. Изменение фильтрующей способности среды при малых упругих деформациях делает возможной при соответствующих давлениях фильтрацию даже в тех средах, которые обычно считаются для жидкости непроницаемыми. В работе приведены результаты численных экспериментов по исследованию коэффициента фильтрации полиуретана (гибкий поливочный шланг) и бутилкаучука. Построены графики искомых механических параметров. Расчеты выполнялись в программном пакете Maple.
коэффициент фильтрации, плоская деформация, напряжения, фильтрация, бигармоническое уравнение, гармоническое уравнение, численный алгоритм
Investigation of the filtration coefficient of elastic-porous medium at plane deformation, pp. 396-407The value of the filtration coefficient is determined empirically due to its physical and chemical properties of the medium and the filtered liquid. However, the experimental data obtained can vary significantly depending on the applied loads. The paper proposes a new hypothesis about the linear dependence of the medium filtration coefficient on the first invariant of the stress tensor arising in the region due to the hydraulic head at the boundary. Within the framework of this hypothesis, the change of the region filtration coefficient under plane deformation is investigated. The appearance of hydraulic head on the border leads to the appearance of elastic perturbations in the environment. Since the velocity of the latter is much higher than the velocity of the liquid filtration, the change in the stress state of the region will lead to a change in the pore space, and, consequently, to a change in the filtration coefficient. Thus, the initial problem is reduced to the solution of the classical problem of elasticity theory, namely, to the solution of the boundary value problem for the Erie function, and then to the definition of the filtration coefficient as the solution of the boundary value problem for the harmonic equation. A numerical algorithm for solving harmonic and biharmonic equations based on the boundary element method is constructed, which ultimately reduces the original problem to a system of linear algebraic equations. As shown by the numerical results of studies, the change in the filtration coefficient of some materials under operating loads reaches 20 percent at some points of the region. These results are especially relevant when using pipes, hoses, water hoses made of various polymeric materials, fiberglass, as well as in the operation of hydraulic engineering and treatment facilities. The change in the filtering capacity of the medium at low elastic deformations makes it possible at the appropriate pressures to filter even in those environments that are usually considered impervious to the liquid. The paper presents the results of numerical experiments to study the filtration coefficient of polyurethane (flexible irrigation hose) and butyl rubber. Graphs of the required mechanical parameters are constructed. Calculations were performed in the Maple software package.
-
О влиянии пористости на режим развития неустойчивости течения жидкости над слоем пористой среды, с. 134-144Описаны результаты линейного анализа устойчивости плоскопараллельного течения несжимаемой жидкости над слоем насыщенной пористой среды при различных значениях ее пористости. Рассматривается ограниченная двухслойная система, состоящая из слоя однородной недеформируемой пористой среды конечной толщины и слоя несжимаемой однородной жидкости над ним. Пористый слой ограничен снизу твердой стенкой, верхняя граница жидкости рассматривается как свободная, но недеформируемая. Выполнен анализ линейной устойчивости стационарного течения в такой системе в условиях существования бимодальной нейтральной кривой и варьировании пористости нижнего слоя. Продемонстрирован переход между двумя основными модами неустойчивости: длинноволновой, связанной с точками перегиба в профиле течения, и коротковолновой, обусловленной большим поперечным градиентом скорости течения вблизи границы раздела жидкости и пористой среды. Уменьшение пористости влечет стабилизацию длинноволновых возмущений без существенного изменения критического волнового числа. Коротковолновые возмущения при этом дестабилизируются, а их критическое волновое меняется в широких пределах. При значении пористости меньше 0.7 инерционные слагаемые в уравнении фильтрации и величина механических напряжений на границе раздела возрастают настолько, что доминирующим механизмом развития неустойчивости становится аналог неустойчивости Кельвина-Гельмгольца. В узком интервале пористости реализуется полоса устойчивости течения, разделяющая ветви нейтральной кривой.
The stability of incompressible fluid plane-parallel flow over a layer of a saturated porous medium is studied. The results of a linear stability analysis are described at different porosity values. The considered system is bounded by solid wall from the porous layer bottom. Top fluid surface is free and rigid. A linear stability analysis of plane-parallel stationary flow is presented. It is realized for parameter area where the neutral stability curves are bimodal. The porosity variation effect on flow stability is considered. It is shown that there is a transition between two main instability modes: long-wave and short-wave. The long-wave instability mechanism is determined by inflection points within the velocity profile. The short-wave instability is due to the large transverse gradient of flow velocity near the interface between liquid and porous medium. Porosity decrease stabilizes the long wave perturbations without significant shift of the critical wavenumber. Simultaneously, the short-wave perturbations destabilize, and their critical wavenumber changes in wide range. When the porosity is less than 0.7, the inertial terms in filtration equation and magnitude of the viscous stress near the interface increase to such an extent that the Kelvin-Helmholtz analogue of instability becomes the dominant mechanism for instability development. The stability band realizes in narrow porosity area. It separates the two branches of the neutral curve.
-
Анализ напряжений в бесконечной пластине из гидроксиапатита/титана с нагруженным круглым отверстием, с. 267-279Цель существующего исследования - вычисление концентрации макро- и микронапряжений в армированный пластине из биоматериала с круглым отверстием в зависимости от коэффициента объемного содержания материалов. Были вычислены величины макро- и микронапряжений на контуре отверстия в зависимости от структуры пластинки. В этой статье напряжение вокруг отверстия было вычислено для ортотропной однонаправленно укрепленной волокном пластинки в зависимости от коэффициента объемного содержания материалов в соединении. Было вычислено распределение напряжений с использованием теоретического метода и метода конечных элементов. Граничные условия, установленные на контуре отверстия, - однородное нормальное давление. В этом исследовании был применен новый числовой метод для нахождения микронапряжений для сложных пластин с круглым отверстием, на контуре которого действует однородное нормальное давление. Результаты показывают макро- и микронапряжения, вычисленные для двух различных структур, и поведение ортотропной пластинки с круглым отверстием. В этом исследовании использовался пакет ANSYS и конечно-элементная представительная модель пластинки.
Stress analysis in an infinite hydroxyapatite/titanium plate with a pressurized circular hole, pp. 267-279The aim of the present study is to compute the macro- and microstress concentration in a reinforced biomaterial composite plate with a circular hole with respect to the volume ratio of the component materials in the composite. The contour of the circular hole and its dependency on the structure of a plate were calculated in order to study the behaviors of macro- and microstresses. In this paper, the stress around a circular hole was calculated for an orthotropic unidirectionally fiber-reinforced plate with respect to the volume ratio of the component materials in the composite. Stress distribution using a theoretical method and the finite elements method was calculated. The boundary conditions applied on the contour of a circular hole are uniform normal pressure. In this present study, we use a new numerical method of determining microstresses for composite plates with a circular hole, on the boundary of which there is a uniform normal pressure. The results demonstrate the macro- and microstresses calculated for two different structures and the behavior of an orthotropic plate with a circular hole. The ANSYS package and the finite-element representative plate model were used in this study.
-
О численном моделировании трехмерной конвекции, с. 118-132Рассмотрена задача о трехмерной конвекции жидкости в прямоугольном параллелепипеде со свободными от касательных напряжений изотермическими горизонтальными границами, при подогреве снизу. Предложен специальный спектрально-разностный численный метод расчета, второго порядка аппроксимации по пространству и первого по времени. Проведенный линейный анализ предлагаемого численного метода показал, что численный метод правильно (с хорошим количественным соответствием в длинноволновой части спектра и с качественным - в коротковолновой) передает спектральные характеристики дифференциальной задачи при реальных значениях шагов по времени, пространству и надкритичности. В качестве тестов проведены расчеты двумерной валиковой и турбулентной конвекции Рэлея-Бенара для надкритичности, равной, соответственно, 2.2 и 950 при числе Прандтля, равном 10.
The problem of three-dimensional convection of the liquid in rectangular parallelepiped with stress-free isothermal horizontal boundaries, at heating from below is considered. The special spectral-finite difference method is offered with the second order aproximation on space and the first on time. The linear analysis proposed numerical method has been shown that numerical method has the good quantitative correspondence in long-wave part of spectrum and qualitative_ in short-wave. As test the calculations of two-dimensional roll and three-dimensional turbulent Rayleigh–Benard convection with supercriticality is equal to 2.2 and 950, accordingly are performed with Prandtl number is equal to 10.
-
Экспериментальная идентификация модели термомеханического поведения стеклующихся полимеров, с. 133-145Рассматривается феноменологическая модель термомеханического поведения полимерных материалов в диапазоне температур, включающем релаксационный переход в стеклообразное состояние (стеклование) и обратный переход (размягчение). Дана наглядная интерпретация закономерностей формирования напряженно-деформированного состояния стеклующегося материала с привлечением возможностей предложенной механической модели. Сформулирована система экспериментов для идентификации материальных функций и констант. Проведены натурные испытания для двух типов стеклующихся полимеров - эпоксидной смолы и полиметилметакрилата.
The phenomenological model of thermomechanical behaviour of polymeric materials over the temperature range, including relaxation transition to a glassy state (glass transition) and inverse transferring (softening) is considered. Obvious interpretation of stress-strain state effects of a vitrifying material by the offered mechanical model tools is done. The system of experiments for identification of material functions and constants is formulated. Some tests for two types of vitrifying polymers - a calibration epoxy and PMMA are spent.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.