Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Задача рассеяния для дискретного оператора Шредингера с «резонансным» потенциалом на графе, с. 29-34Рассматривается дискретный оператор Шредингера на графе, являющийся гамильтонианом электрона, в приближении сильной связи в системе, состоящей из квантовой проволоки и двух внедренных квантовых точек. Данный оператор описывает двухбарьерную резонансную наноструктуру, причем один из барьеров представляет собой нелокальный потенциал. Описан существенный и абсолютно непрерывный спектр оператора. Изучается задача рассеяния в стационарной постановке для двух возможных направлений распространения частицы. Найдены условия полного отражения и полного прохождения.
дискретный оператор Шредингера, спектр, уравнение Липпмана–Швингера, задача рассеяния, квантовая точкаWe consider a discrete Schrödinger operator on the graph, which is the Hamiltonian in the tight-binding approach of an electron in the system consisting of a quantum wire, and two embedded quantum dots. This operator describes the double-barrier resonant nanostructure, in which one of the barriers is a non-local potential. The essential and absolutely continuous spectra of this operator are described. We study the scattering problem in the stationary approach for two possible directions of particles propagation. The conditions of total reflection and total transmission are found.
-
В современной физической литературе неоднократно возникала потребность в формулах, позволяющих в квантовой одномерной задаче рассеяния свести вычисление вероятности отражения (прохождения) для потенциала, состоящего из нескольких «барьеров», к вероятностям отражения и прохождения через эти «барьеры». В настоящей работе исследуется задача рассеяния для разностного оператора Шрёдингера с потенциалом, являющимся суммой N функций (описывающих «барьеры» или «слои») с попарно непересекающимися носителями. С помощью уравнения Липпмана-Швингера доказана теорема, позволяющая вычисление амплитуд отражения и прохождения для данного потенциала свести к вычислению амплитуд отражения и прохождения для слагаемых. Для N=2 получены простые явные формулы, осуществляющие такое сведение. Рассмотрены частные случаи четного первого барьера и двух одинаковых четных (после соответствующих сдвигов) барьеров. Разумеется, аналогичные результаты справедливы и для вероятностей отражения и прохождения. Получено простое уравнение для нахождения резонансов двухбарьерной структуры в терминах амплитуд для каждого из двух барьеров.
В статье также приведена иная схема доказательства полученных результатов, основанная на разложении в ряд T-оператора, позволяющая обосновать физические представления о рассеянии на многослойной структуре как о многократном рассеянии на отдельно взятых слоях. При доказательстве утверждений используется известный прием сведения уравнения Липпмана-Швингера к «модифицированному» уравнению в гильбертовом пространстве, что позволяет, в свою очередь, воспользоваться теорией Фредгольма. Конечно, все полученные результаты остаются справедливыми и для «непрерывного» оператора Шрёдингера, а выбор дискретного подхода обусловлен его растущей популярностью в квантовой теории твердого тела.
In modern physics literature, the need for formulas that permit, in a quantum one-dimensional problem, to reduce a calculation of the reflection (transmission) probability for the potential consisting of some “barriers” to the reflection and transmission probabilities over these “barriers” repeatedly occurred. In this paper, we study the scattering problem for the difference Schrodinger operator with the potential which is the sum of N functions (describing the “barriers” or “layers”) with pairwise disjoint supports. With the help of the Lippmann-Schwinger equation, we proved the theorem which reduces the calculation of the reflection and transmission amplitudes for this potential, to the calculation of the ones for these barriers. For N=2 simple explicit formulas which realized this reduction were obtained. The particular cases for the even first barrier and two identical even (after appropriate shifts) barriers were studied. Of course, the similar results hold for the reflection (transmission) probabilities. We obtained the simple equation for the double-barrier structure resonances in terms of the amplitudes of each of the two barriers.
In the paper, we also present the alternative scheme of the proof of the obtained results which are based on the series expansion of the T-operator. This approach substantiates the physical understanding of the scattering by a multilayer structure as multiple scattering on separate layers. To proof the theorems, the known method of reduction of the Lippmann-Schwinger equation to the “modified” equation in a Hilbert space is used. Of course, all the results remain valid for the “continuous” Schrodinger operator, and the choice of the discrete approach is due to its growing popularity in the quantum theory of solids.
-
В статье рассматривается дискретный оператор Шредингера на графе с вершинами на двух пересекающихся прямых, возмущенный убывающим потенциалом. Данный оператор является гамильтонианом электрона вблизи структуры, образованной квантовой точкой и выходящими из нее четырьмя квантовыми проволоками в приближении сильной связи, широко используемом в настоящее время в физической литературе для изучения подобных наноструктур. Доказаны существование и единственность решения соответствующего уравнения Липпмана–Швингера, для решения получена асимптотическая формула. Изучена нестационарная картина рассеяния. Исследуется задача рассеяния для данного оператора в случае малого потенциала, а также в случае, когда малы как потенциал, так и скорость квантовой частицы. Получены асимптотические формулы для вероятностей распространения частицы во всех возможных направлениях.
Scattering in the case of the discrete Schrödinger operator for intersected quantum wires, pp. 74-84The paper considers the discrete Schrödinger operator on a graph with vertices on two intersecting lines, which is perturbed by a decreasing potential. This operator is the Hamiltonian of an electron near a structure formed by a quantum dot and four outgoing quantum wires in the tight-binding approximation widely used in the physics literature for studying such nanostructures. We have proved the existence and uniqueness of the solution of the corresponding Lippmann-Schwinger equation and obtained the asymptotic formula for it. The non-stationary scattering picture has been studied. The scattering problem for the above operator in the case of a small potential, and also in the case of both a small potential and small velocity of a quantum particle, is investigated. Asymptotic formulas for the probabilities of the particle propagation in all possible directions have been obtained.
-
Углеродные нанотрубки активно исследуются в физической литературе в последние два десятилетия. Уникальные физические свойства, в частности высокая прочность и проводимость, обуславливают многообещающие возможности их применения в микроэлектронике. Несмотря на физическую актуальность этих задач, математически такие структуры исследовались очень мало. В данной работе в приближении сильной связи рассматривается гамильтониан электрона в однослойной нанотрубке типа «зигзаг» с примесью, равномерно распределенной в сечении нанотрубки. С помощью уравнения Липпмана-Швингера исследуется задача рассеяния для данного гамильтониана в случае малого потенциала примеси и медленных электронов. Поскольку электронная проводимость пропорциональна вероятности прохождения, фактически при этом изучается задача проводимости в нанотрубке. Получены простые формулы для коэффициентов отражения и прохождения. Найдены условия полного отражения и полного прохождения, а также условия возрастания и убывания вероятности прохождения.
Electron scattering in a carbon nanotube, pp. 239-244Carbon nanotubes are being actively studied in the physics literature in the last two decades. Their unique physical properties, in particular high strength and conductivity, are the reason of the promising applications for their use in microelectronics. Despite the relevance of these physical problems, such structures are poorly mathematically studied. In this paper, within the tight-binding approximation, we consider the Hamiltonian of an electron in a single-walled zigzag nanotube with an impurity, evenly distributed in the cross section of the nanotube. Using the Lippmann-Schwinger equation, we investigate the scattering problem for this Hamiltonian in the case of small impurity potential and slow electrons. Since the electronic conductance is proportional to the transmission probability, we actually study the problem of conductance in a nanotube. Simple formulas for the reflection and transmission coefficients are obtained. The conditions of total reflection and total transmission, as well as the conditions of increasing and decreasing the transmission probability are found.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.